期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 管理论文 > 财政金融 >

居民家庭金融资产组合集成风险的测量与波动分析(2)

 其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Φρ(·)表示相关系数矩阵为ρ的标准多元正态分布,Φ-1(·)表示标准正态分布函数的逆函数。多元正态Copula函数适合刻画对称相依性、不具有厚尾特征的多维风险因子。 
  2. 多元t-Copula函数(multivariate Student's Copula-MVT) 
  Nelsen(1999)给出了多元t-Copula函数的定义,多元t-Copula分布函数的表达式为: 
  C(u1,…un,…,uN;ρ,v)=Tρ,v(tv-1(u1),…, 
  tv-1(un),…,tv-1(uN)) (3) 
  其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Tρ,v(·)表示相关系数矩阵为ρ,自由度为v的标准多元t分布,tv-1(·)为自由度为v的一元t分布的逆函数。多元t-Copula函数适合刻画对称相依性、一定厚尾特征的多维风险因子。 
  3. Archimedean Copula函数 
  Clayton-Copula、Gumbel-Copula和Frank-Copula函数,它们只能用于二维的变量的分析: 
  Clayton-Copula:C■■=max[(u-α+v-α-1)-1/α,0],其中,α?缀[-1,∞]\{0} 
  Gumbel-Copula:C■■=exp[-[(-lnu)α+ 
  (-lnv)α]1/α],其中,α?缀[-∞,∞] 
  Frank-Copula:C■■=-■ln[1+■]其中,α?缀[1,∞] 
  Archimedean Copula函数中的Clayton-Copula函数和Gumbel-Copula函数适合刻画不对称相依性的多维风险因子,其中Clayton-Copula函数一般用来刻画具有较强下厚尾的特征,Gumbel-Copula函数则常用来刻画较强上厚尾的特征。而Frank-Copula函数适合刻画对称相依性、在中心和上下尾部分布均匀的多维风险因子。 
  (三)计算金融资产组合的VaR值 
  以包含两种金融资产的金融资产组合为例,两种金融资产的权重分别为w1和w2,并且w1+w2=1满足。使用X和Y分别代表资产1和资产2的对数收益率,P■■,P■■为t期价格,定义对数收益率为:X=ln(P■■/P■■),Y=ln(P■■/P■■),则资产组合的收益率定义为:R=ln(w1eX+w2eY)。对应的风险价值(VaR)值是:Pr(R  具体计算过程如下:①使用各类Copula函数,产生相依的二维随机样本;②通过各边缘分布函数经过逆概率变换为对数收益率X和Y;③把两者代入资产组合收益率公式中,得到资产组合收益率R的样本;④计算资产组合收益率样本的分位数,即为一定置信度下的VaR值。 
  三、测算中国居民家庭金融资产组合的集成风险 
  (一)数据的选取和说明 
  通过对中国居民家庭金融资产中手持现金、储蓄存款、债券、股票和保险准备金这五种金融资产在资产组合中所占比重进行计算发现,中国居民家庭的储蓄存款所占的比重一直比较高,在家庭金融总资产中占了一半以上,并且有缓慢上升的趋势。居民的手持现金比例在持续快速下降,从1978年的40%多,下降到2008年的10%,期间有一些波动,从图1上看,周期性并不明显。居民持有的债券比例在20世纪90年代期间比较高,到2000年以后逐年下降。居民持有的股票比例虽然比较低,但是变动却比较明显,反映出明显的周期性。我国居民的保险准备金比例虽然有上升的趋势,但是比重仍然比较低(见图1)。 
  由于居民家庭金融资产组合中现金并不能产生收益,保险准备金持有比例比较低,所以本文只测算家庭金融资产中储蓄存款、债券和股票。将储蓄存款和债券通过居民持有的比例合并为家庭无风险金融资产,股票代表家庭的风险资产。以1990年到2010年中国居民家庭的无风险资产和风险资产作为原始数据,按照测算金融资产组合风险的步骤,首先计算家庭无风险资产和风险资产的对数收益率;然后,通过构建Copula函数计算家庭金融资产组合的联合分布函数;最后,计算家庭金融资产组合的VaR值。 
  (二)构建Copula函数计算家庭金融资产组合的VaR值 
  计算居民家庭无风险金融资产和风险资产的对数收益率,并对其对数收益率数列进行正态Jarque-Bera检验,它们都服从服从正态分布,其中无风险金融资产对数收益率是右偏的,而风险资产对数收益率是左偏的(见表1所示)。 
  为了便于分析,我们选择多元正态Copula函数构建联合分布函数。然后根据VaR计算公式,在险价值VaR的上下限区间为:VaR=R+σZα,其中R在这里为正态Copula分布函数值,为正态Copula函数的标准差,如果取显著性水平为,查表得正态分布的分位数。得到正态Copula函数和VaR值如表2和图2所示。 
  (三)家庭金融资产风险分析 
  家庭金融资产风险的特点是: 第一,居民家庭金融资产VaR值在各年间呈现波状变动,其中1991~1993年、1998年、2002年、2007年均达到高点,尤其以2007年VaR值最大。我们知道,1997年爆发过东南亚金融危机,而2008年全球金融危机并最终导致了持续几年的经济危机。家庭金融资产组合风险在1997年东南亚金融危机后才达到高点,而在2008年全球金融危机之前则达到了最高点。由此的解释应该是,1997年的东南亚金融危机只是区域性的危机,而2008年之前全球经济与金融风险积聚,经济泡沫随时都会破灭。反映到微观的居民家庭金融资产投资上,风险已累积到了高点。第二,居民家庭金融资产组合的风险值VaR与无风险金融资产的波动幅度、波动时间是一致的。主要是因为无风险金融资产在居民家庭金融资产中占有比较大的比重。居民家庭金融资产中风险资产的波动与资产组合的风险值VaR的波动幅度、波动时间完全不一致。而且,风险资产的收益波动与资产组合的风险值呈反向关系。其中,1997年、2002年和2007年的风险资产收益均低于VaR的下限值,也就是说,居民在这些年份中的总投资是亏损的。有意思的是,1997年风险资产的收益达到低点,随后1998年家庭金融资产组合风险值达到了高点;2002年和2007年的风险资产收益达到低点,同年家庭金融资产组合风险风险值达到了高点。


更多财政金融论文详细信息: 居民家庭金融资产组合集成风险的测量与波动分析(2)
http://www.400qikan.com/mflunwen/gllw/czjr/4585.html

相关专题:家用风能发电机 电大西方经济学本科


上一篇:我国银行理财业务发展趋势研究
下一篇:论互联网金融对证券行业的影响

认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


品牌介绍