期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 社科历史 > 自然科学 >

兆瓦级风力发电机组偏航系统主动偏航特性分析

  摘要:针对兆瓦级风力机偏航动作时剧烈振动问题,本文根据兆瓦级风机偏航系统主动偏航原理,在ADAMS中建立了兆瓦级风力发电机偏航系统虚拟样机动力学仿真模型.兆瓦级风力发电机组偏航系统主动偏航振动分析结果表明,偏航系统前四阶扭转振动的固有频率分别为17.694 7 Hz,55.816 6 Hz,85.141 2 Hz,170.182 3 Hz.动力学仿真分析结果表明,主机架在偏航运动的结束阶段存在剧烈的来回振荡现象,且振动的幅值达到了0.15 rad,振动衰减的时间超过了20 s,通过在主机架上加反馈控制可快速消除兆瓦级风机偏航系统来回振荡现象.
  关键词:风力发电机组;偏航系统;主动偏航;固有频率
  中图分类号:TK83 文献标识码:A
  随着世界各国对能源需求的持续增长与日益严格的环境法规,目前兆瓦级风力发电机组已成为风能利用的主流设备.当风速矢量方向发生变化时,风力发电机组的偏航系统能够快速平稳地对准风向,以便风轮获得最大的风能.然而在主动偏航系统启动与刹车过程中,偏航系统的振动对风力发电机组的振动噪声、紧固件的疲劳寿命等方面产生严重的影响.如果其固有频率接近激励频率,系统将产生共振,则风力机在运行过程中,载荷由于结构共振而被放大,这关系到整个风电机组的安全运行.因此有必要对兆瓦级风力发电机偏航系统的振动特性作深入研究,避免共振的发生.然而,目前国内外对风力发电机组振动的研究主要集中在塔筒和桨叶方面,对偏航系统振动研究还比较少[1-3].文献[3]对兆瓦级风力机液压驱动的偏航系统进行了优化设计.文献[4]建立了塔架的扭转振动模型和运动方程,引入了摩擦失稳因子,得到塔架扭转振动失稳的条件.文献[5]从理论上对塔架进行了模态分析,在机舱与塔架耦合条件下求解塔架扭转振动的各阶固有频率与振型.文献[6]对螺栓连接非线性振动特性进行研究,将螺栓连接系统简化为弹簧、阻尼器、质量块的单自由度模型,说明了非线性方程能够较好地描述螺栓连接的振动特性.
  但如何采取有效措施对兆瓦级风力发电机组偏航系统进行主动偏航动力学分析仍然是主动偏航过程兆瓦级风机偏航系统性能提高的瓶颈.为此,本文针对兆瓦级风力发电机组偏航系统主动偏航过程振动现象,从动力学角度研究偏航系统的动力学机理,并构建合适的兆瓦级风力发电机组偏航系统虚拟样机动力学模型,研究主动偏航过程偏航系统动力学规律.
  1偏航系统主动偏航动力学模型
  1.1偏航系统工作原理
  如图1所示,滑动式偏航系统包括机舱、偏航齿圈、横向吊杆、压盘、柱头螺栓、蝶簧、摩擦片等装置.偏航齿圈通过高强度螺栓与塔架法兰固定连接,其外齿与固定在主机架上的偏航驱动减速箱输出轴齿轮相啮合,横向吊杆在压盘、碟簧等定位装置的作用下夹紧偏航齿圈的内圈并且通过高强度螺栓与风力发电机组机舱固定连接.
  当偏航系统启动工作时,控制系统发出指令,4个驱动电机同时启动,偏航电机驱动偏航减速箱带动主机架绕偏航大齿圈缓慢旋转以实现对风;偏航动作结束需要制动时,依靠上下及侧部滑动摩擦块与偏航齿圈产生的摩擦力使机舱停止旋转;同时,驱动电机匹配有偏航制动器,在摩擦力与制动力矩的共同作用下,确保偏航系统不工作时,机舱能够锁死并保持静止状态[7-9].
  根据风力发电机实际运行工况,在偏航驱动减速箱输出轴齿轮与主机架之间建立旋转副,偏航齿圈与塔架通过固定副连接,塔架固定在大地上;侧摩擦片与横向吊杆通过固定副以实现定位;顶摩擦片通过固定副与摩擦片保持架固定在一起;碟簧用建立在横向吊杆与底摩擦片处的弹簧模拟,并且在底摩擦片与横向吊杆之间施加移动副,通过施加运动副以实现偏航电机驱动偏航减速箱带动主机架及机舱绕偏航齿圈缓慢转动.
  2.1.3添加接触力
  在4个偏航驱动减速箱输出轴齿轮与偏航齿圈啮合处施加接触,在6个侧摩擦片与偏航大齿圈之间定义摩擦力;在30片底摩擦片与偏航大齿圈之间定义接触力,且静摩擦系数为0.3,动摩擦系数为0.1;顶部摩擦片与偏航齿圈之间分别用衬套代替平面副,并且在顶部摩擦片与偏航齿圈之间添加接触,通过施加接触以实现虚拟样机模型各个构件之间实现力的传递.
  2.1.4螺栓的等效
  横向吊杆处的高强度螺栓采用普通螺栓连接,当外载荷作用在系统上时,它依靠连接预紧后横向吊杆与主机架接合面间产生的摩擦力来抵抗横向外载和转矩,而螺栓的轴向除了承受轴向工作载荷外,还受到预紧力的作用.在ADAMS里面为了更好地模拟螺栓的连接作用,本文采用衬套来模拟螺栓联接.
  2.1.5施加外载
  在塔架与偏航齿圈结合面的中间建立一个属于主机架的Marker_1点,在Marker_1点上施加1 432.12 kN的力以及2 599.68 kN·m力矩作为外载.
  2.2偏航系统主动偏航动力学仿真结果分析
  2.2.1动力学仿真分析
  在偏航驱动减速箱输出轴齿轮与主机架之间的旋转副上施加函数为STEP5(time,2.7, 0.314d, 2.78, 0d )的速度驱动,进行动力学仿真分析[10-13].可以得到每个运动副所承受的力,以及构件之间的相对位移、相对加速度和相对速度.图6为塔架与地面之间的固定副在Y轴方向所受的力.
  当在主机架上只施加Y轴方向的外载荷时,此固定副51受的力大小为2.441×106 N,它与虚拟样机的各个部件的总的重力与外载荷之和相等.这说明该虚拟样机模型能够真实模拟风力发电机偏航系统的工作.
  2.2.2动态特性分析
  加载ADAMS/Vibration模块,在偏航驱动电机输出轴齿轮与大齿圈啮合处定义输入,在主机架处定义输出.对系统进行基于模态的振动响应求解,求解系统的固有频率与振型.在风力发电机组偏航系统进行模态分析和频响特性分析.


更多自然科学论文详细信息: 兆瓦级风力发电机组偏航系统主动偏航特性分析
http://www.400qikan.com/mflunwen/skls/zrkx/3771.html

相关专题:国画家 传承投稿


上一篇:感应加热电源的容性移相PWM调功
下一篇:考虑桩—土相互作用的悬臂式排桩内力计算方法研究

认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


品牌介绍