期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 社科历史 > 自然科学 >

生物技术生产甲硫氨酸研究进展

1甲硫氨酸生产国内外发展近况

甲硫氨酸是继谷氨酸之后产量第二大的氨基酸,2011年,针对动物饲料的甲硫氨酸市场年销售额约28.5亿美元,销量85万吨,年增长率5%。据不完全统计,2014年全球甲硫氨酸需求量约100万吨,呈逐年增长趋势。目前甲硫氨酸三大主要生产商为赢创(原德固赛)公司,安迪苏(原普朗克)公司和日本曹达(原孟山都)公司[6]。2006年,中国蓝星有限公司收购安迪苏子公司,并于2010年在江苏南京开始建厂,将最初年产能7万吨的计划翻倍至14万吨。该厂的建成投产将结束中国重要动物饲料添加剂完全依赖进口的局势。赢创公司2011年12月决议,在新加坡建立产能15万吨的甲硫氨酸加工厂,将在2014年第三季度投入生产。韩国杰希公司和法国阿科玛公司于2012年宣布将在东南亚建立产能8万吨的甲硫氨酸加工厂,该厂将采用全新的发酵-化学法联合生产线。德国巴斯夫公司虽然于2007年申请了发酵生产甲硫氨酸的专利,但至今仍不适用于商业生产。法国迈陀保利克公司和罗盖特公司合作致力于L-甲硫氨酸发酵产品的研发[6]。

2生物技术生产甲硫氨酸研究进展

2.1微生物发酵路线的相关研究

2.1.1甲硫氨酸生物合成途径的研究

为构建甲硫氨酸生产菌,首先需要了解甲硫氨酸的生物合成途径,其中最基本的氨基酸生产菌——大肠杆菌(Escherichiacoli)和谷氨酸棒杆菌(Corynebacteriumglutamicum)成为研究者关注的焦点。如图1,细菌中甲硫氨酸合成途径以天冬氨酸为起点,经天冬氨酸激酶(aspartokinase,AK)和高丝氨酸脱氢酶(homoserinedehydrogenase,HSD)两个限速酶催化,生成高丝氨酸,进而分别合成苏氨酸和甲硫氨酸。甲硫氨酸合成存在两个途径:巯基转移途径以胱硫醚为中间体,以半胱氨酸为硫源,而直接巯基化途径则可利用无机硫源。大肠杆菌只通过巯基转移途径合成甲硫氨酸,谷氨酸帮杆菌可同时利用两个途径。2002年Hwang等[14]在谷氨酸棒杆菌中发现了甲硫氨酸生物合成的直接巯基化途径,并对metY或metB进行突变,比较突变株生长参数。两种酶在序列上存在相似性,但微生物优先选择巯基转移途径。因此它们在进化上可能来自同一种酶,而MetY是长期进化过程中突变和自然选择的结果,存在受甲硫氨酸反馈抑制、与底物亲和性低的缺陷。2007年,该课题组[15]对MetB和MetY进行纯化,比较了二者的生化参数。发现MetB和MetY对O-乙酰高丝氨酸催化作用的Km值分别为3.9和6.4mmol/L,与之前的推测吻合。同时,MetY对硫化物离子的Km也过高,证明其与硫化物离子的结合也很微弱,温度和pH耐受性也较MetB差。至此,MetY存在的生理意义和利用价值尚不明晰。2006年,Krmer等[16]在对大肠杆菌和谷氨酸棒杆菌甲硫氨酸代谢途径进行计算机模拟分析时发现,以甲硫醇为硫源时,NADPH的消耗减少,可使甲硫氨酸理论产量得到提高。以甲硫醇或其二聚体二甲基二硫为硫源的原理是将其-S-CH3基团完整地插入甲硫氨酸的R基而直接生成甲硫氨酸。这一理论在2010年被Bolten等[17]证实,并通过基因敲除和14C同位素示踪实验证明,催化这一反应的酶正是MetY。至此,MetY这一独特功能为该领域的研究提供了全新的线索。

2.1.2甲硫氨酸生产菌选育的相关研究

除发酵常用的谷氨酸棒杆菌和大肠杆菌之外,枯草芽孢杆菌(Bacillussubtilis)、百合棒杆菌(Corynebacteriumlilium)也常用作改造的出发菌株。2012年,Dike等[3]从不同土样中筛选出三株蜡样芽孢杆菌(Bacilluscereus)RS-16,DS-13,和AS-9,其中最优菌株RS-16经96h发酵产甲硫氨酸1.84mg/mL。但野生型菌株氨基酸的生物合成受到严格的代谢调控,一般不能满足大量生产氨基酸的需要。因此,需要人为打破微生物对甲硫氨酸生物合成的代谢调节。筛选抗结构类似物菌株和营养缺陷型菌株是最常用的育种方法。2003年,Kumar等[18]采用紫外和亚硝基胍诱变技术处理百合属棒杆菌,筛选获得M-128菌株,其甲硫氨酸产量为2.3g/L;2009年,闵伟红等[19-20]通过抗结构类似物的筛选获得北京棒杆菌(Corynebacteriumpekinense)突变株E31,其甲硫氨酸产量达1.479g/L。2011年,该课题组以E31为出发菌株,采用复合诱变和青霉素浓缩法筛选获得12株赖氨酸和苏氨酸双重营养缺陷型突变株,其中突变株GE37的甲硫氨酸产量达3.55g/L。这些传统的改造方法机理难以阐明,工作量大,但突变全面、有效。随着基因技术的发展,2007年,Park等[1]解除了苏氨酸对HSD的反馈抑制,同时敲除了thrB基因,阻止苏氨酸合成。分批发酵过程中甲硫氨酸产量达2.9g/L。2011年,Chen等[21]利用分子动力学模拟与统计耦合分析相结合鉴别出30个关键氨基酸残基,并证明这些残基的突变可在不同程度上解除大肠杆菌AKⅢ的反馈抑制。至此,对于两大限速酶的研究逐渐趋于半理性,能在代谢和进化水平上做出合理的解释,改造目标更明确。在菌种选育过程中,一些新发现也给研究人员以启示。2005年,Mampel等[22]对谷氨酸棒杆菌进行转座子诱变,得到7000个具有乙硫氨酸抗性的突变株,转座子插入位点为ORFNCgl2640,NCl2640失活会导致甲硫氨酸产量增加,证明该位点与L-甲硫氨酸合成途径中某种抑制的解除密切相关。其结构和具体功能有待科研工作者深入研究。2010年,Bolten等[17]发现了MetY的独特功能后,试图对MetY进行过表达以增加甲硫氨酸产量,结果MetY酶活力提高近30倍,但发酵液中并无甲硫氨酸,胞内甲硫氨酸产量也只提高2倍。胞内组分分析发现其底物O-乙酰高丝氨酸已完全耗尽。这说明半理性的单基因修饰难以保证整个代谢网络的平衡,以途径中各代谢物和酶的功能性质及代谢流分布信息为基础,更加理性化的多基因修饰成为下一阶段的研究目标。2002年BiranD发现大肠杆菌[23]中MetA极易被四种依赖ATP催化的蛋白酶水解,且该基因受热转录休克调控。2013年,Dike等[24]对根癌土壤杆菌中MetA进行表征时发现了相同的不稳定性和极端不耐热特性。这极有可能也是赖氨酸和苏氨酸易发酵生产,在同一途径下游的甲硫氨酸却一直难以实现发酵生产的重要原因。

2.1.3甲硫氨酸向胞外输出的研究

发酵法生产甲硫氨酸在合成水平上不易达到增产目标,即便细胞质内甲硫氨酸产量得到提高,释放至培养液中的量却极少。总结有以下两方面原因:①微生物自身调控严格,为趋利避害,甲硫氨酸在自然条件下不会过量积累,即使经改造的菌株,甲硫氨酸的产量与微生物细胞适应性之间的平衡也难把握。②即使细胞质内甲硫氨酸过量积累,但其输出体系不完善,产物被微生物自身再利用或直接伤害细胞。2005年,Trtschel等[25]在已经提高了胞内甲硫氨酸浓度的条件下,利用DNA微阵列技术识别出过量表达的膜蛋白基因brnF(编码BrnFE中较大的亚基),之前研究表明其与异亮氨酸输出体系有关。当BrnFE的合成被氯霉素关闭时,仍能观察到大量甲硫氨酸输出,只有极大提高氯霉素水平,其输出才会减弱。这说明甲硫氨酸输出体系不止一个,还存在不易被识别、但输出能力高的其它体系。发掘并扩增输出通道既可增加发酵液中甲硫氨酸产量,又能避免代谢物积累对微生物的损伤。

2.1.4发酵条件的相关研究

对于甲硫氨酸发酵,最特殊的培养基成分即硫和甲基。以谷氨酸棒杆菌为例,2006年,Krmer等[16]用计算机模拟了不同硫源在甲硫氨酸合成途径中的应用。以硫酸盐为硫源通过直接巯基化途径生成1mol甲硫氨酸消耗8molNADPH,巯基转移途径消耗9molNADPH,而以硫代硫酸盐为硫源,整个代谢过程只需要5.5molNADPH,以硫化物为硫源,NADPH消耗量仅为硫酸盐的一半。但PPP途径和TCA循环所能提供的NADPH是固定的,因此不同硫源的利用效率有待在实践中考证。硫与甲基来源的结合可以考虑比较硫代硫酸盐与甲酸盐、硫化物与甲酸盐及甲硫醇的利用情况。除了这两种关键组分,2014年,Anakwenze等[26]从发酵的油豆种子中分离出甲硫氨酸产量为1.89mg/ml的赤云金芽孢杆菌(Bacillusthuringiensis)EC1,对发酵总体积、接种量、碳源及氮源浓度、促生长物质均进行探索优化,最终赤云金芽孢杆菌EC1甲硫氨酸的产量可以达到3.18mg/mL。对于发酵工艺的探索一直是实际生产中的关键。Sharma等[27]研究了百合棒杆菌产甲硫氨酸中稀释速率与溶解氧对甲硫氨酸产量的影响。最终确定当稀释速率为0.16、溶氧为42%时,甲硫氨酸生产速率最大值为160mg/(L•h)。2012年,贾翠英等[28]研究了不同破壁方法对细菌甲硫氨酸产量的影响。结果表明,经碱破壁、溶菌酶破壁,超声波破壁、碱与超声波复合破壁、溶菌酶与超声波复合破壁后,甲硫氨酸产量分别提高10.9%、12%、18.3%、19.6%、22.2%。这种工艺可以将胞内甲硫氨酸释放出来,增加收率,复合破壁比单一破壁效果更显著。

2.2酶法生产路线的相关研究

2.2.1外消旋混合物拆分生产甲硫氨酸

酶法拆分又分为两种思路,传统的拆分是消除外消旋混合物中的D-甲硫氨酸,另一种路线将D型转化为L型,纯化的同时也增加了产量无疑是更理想的选择。2007年,Findrik等[29]利用原玻璃蝇节杆菌(Arthrobacterprotophormiae)中D-氨基酸氧化酶、过氧化氢酶、红球菌(Rhodococcus)中L-苯丙氨酸脱氢酶、博伊丁假丝酵母(Candidaboidinii)中甲酸脱氢酶串联实现D-甲硫氨酸向L-甲硫氨酸的完全转化。更具意义的是,D-氨基酸氧化酶和L-苯丙氨酸脱氢酶可以作用于不同的底物,因此,该体系也适用于其它D型氨基酸及某种氨基酸外消旋体向L型的转化合成。

2.2.2化合物酶解生产甲硫氨酸

2014年,Jin等[30]对大肠杆菌中经密码子优化的腈水解酶基因进行重新合成和表达,从而有效利用2-氨基-4-甲硫基丁腈水解生产甲硫氨酸。并在催化剂充足的情况下,以固定的底物/催化剂比值探索底物最佳浓度。该课题组也对在填充床反应器中利用固定化静息细胞生产甲硫氨酸进行了研究,结果显示固定化腈水解酶100h后活性仍大于80%,甲硫氨酸总回收率达97%。该项研究表明,重组腈水解酶应用于甲硫氨酸生产具有巨大潜力,酶在微生物体内的过表达与酶的固定化技术相结合可能实现产量突破。

2.3发酵与体外酶催化路线相结合

发酵法即以培养基组分为原料,利用微生物自身体内代谢反应,将低成本原料转化为高价值产品,是最经济环保的氨基酸生产方式。发酵法之所以至今无法应用于甲硫氨酸生产,关键在于其合成途径的每一步均受到严格地反馈抑制,经本课题组改造后的菌株GE37的甲硫氨酸发酵产量也仅为3.55g/L[20]。因此发酵法生产甲硫氨酸仍处于科研阶段。体外酶催化反应目前并没有一套完整的独立生产体系,而是作为化学生产方法的辅助手段,2000年之前即用于DL-同型半胱氨酸向L-甲硫氨酸的合成及DL-甲硫氨酸的分离[31]。近年的研究也多属于化学合成法的下游,目的是获得高纯度的L-甲硫氨酸。酶催化与发酵法相比,反应过程较短,反应体系及条件易灵活操控。因此,发酵与体外酶催化路线相结合可以回避微生物的部分反馈抑制,缩短发酵过程以得到产量较大的中间体,进而以此为底物合成L-甲硫氨酸。韩国杰希公司采用的发酵/化学法联合生产工艺即为两种路线结合的实例,并于2012年宣布在东南亚建立产能80000吨的甲硫氨酸加工厂。该路线以葡萄糖为基质,利用微生物发酵法生产琥珀酰高丝氨酸,随后用酶将这一中间产物转化成甲硫氨酸和琥珀酸。如图3所示,经计算,这种全新的发酵/化学法联合工艺生产的L-甲硫氨酸成本略高于化学合成法[6]。

3面临的问题及展望

3.1发酵法生产面临的问题和建议

甲硫氨酸与其他氨基酸相比至今难以实现发酵法生产,综合上文所述,总结了以下三个方面原因和建议:

3.1.1硫源的利用效率

甲硫氨酸与其他氨基酸最大的不同即对硫源的需求,而发酵法应用最普遍的硫源为硫酸盐,需消耗大量NADPH,但生物体能提供的NADPH有限;硫化物对NADPH需求量虽少,但因多有毒且稳定性差,不适用于培养基;硫代硫酸盐兼具氧化性与还原性,应该对其进行进一步选择和研究。甲硫醇作为硫和甲基的综合供体,可以缩短代谢途径并为最后一步提供更多甲基。因此,应该对硫代硫酸盐与甲硫醇或二甲基二硫的复合使用进行新的尝试。提高NADPH的供应量也是菌株改造的策略之一。

3.1.2代谢途径调控的改造硫和甲基的参与已经使代谢途径增长,而合成途径中涉及到诸多反馈抑制性酶,进一步削弱了代谢流。如何确定关键酶、发现酶的活性中心及抑制剂结合位点,并进一步识别关键残基成为一个艰巨的课题。通过半理性设计,本课题组已找出北京棒杆菌(Corynebacteriumpekinense)天冬氨酸激酶与抑制剂结合位点有直接或间接作用的所有关键氨基酸残基,并通过突变解除反馈抑制得到高活力菌株。2013年,李慧颖[32]得到突变体R169H,酶活较突变前提高2.3倍;同年,郭永玲[33]得到突变体T361N、A362I,酶活分别提高47.99倍、34.60倍;2014年,任军等[34]得到突变体G277K,酶活提高9.48倍;同年,朱运明等[35]得到突变体G377F,酶活提高9.3倍。此外,类似的单基因修饰研究缺少全面性和持续性,还应对改造前后的代谢流变化进行对比分析,尝试针对改造后的缺陷进行多基因修饰,继续对甲硫氨酸产量是否提高进行试验。较成功的理性设计在甲硫氨酸同族氨基酸——赖氨酸生产中有成功的先例。2013年,SKind等人[36]根据TCA循环和赖氨酸合成途径相关知识,通过敲除sucCD在琥珀酰辅酶A合成酶水平上有目的性地阻断TCA循环,使其与赖氨酸合成途径相结合,增加目的产物合成途径代谢流,产量提高60%。由于理性设计需要大量全面准确的生物学信息,直接针对代谢流的整合在甲硫氨酸研究领域还需要尝试和突破。

3.1.3关键酶在代谢过程中的稳定性

在大肠杆菌和根癌土壤杆菌中均证实了高丝氨酸酰基转移酶(homoserinetranssuccinylase,HTS)的不稳定性,这可能也是赖氨酸和苏氨酸易发酵生产,而同一途径下游的甲硫氨酸却一直难以实现发酵生产的重要原因。其极端不耐热和易被蛋白酶分解这两大特性,是发酵法面临的难题。对Biran等人发现的四种可能分解HTS的蛋白酶进行修饰,或与嗜热菌关键基因整合都是菌株改造可以尝试的方向。此外,甲硫氨酸向胞外输出的研究尚不成熟,可在菌株改造后,对胞内组分进行量化分析,以探索胞内甲硫氨酸产量最大时的条件,以及能分泌到胞外营养缺陷型菌种选育。

3.2酶法生产面临的问题和建议

酶法合成一般不作为单独的生产路线,传统的酶法是与石化生产路线相结合,以石化生产废弃物为原料,进行化学合成后,对外消旋混合物进行拆分以得到高纯度的L-甲硫氨酸,其中Findrik等人[29]将D型转化为L型的试验是更具意义的研究。韩国杰希公司首次采用发酵法与体外酶催化的联合生产工艺,先利用微生物发酵生产琥珀酰高丝氨酸,随后用酶法在微生物体外将这一中间产物转化成甲硫氨酸和琥珀酸。降低生产成本的同时减少污染。2010年,Bolten等人[17]对谷氨酸棒杆菌MetY进行过表达使酶活力大幅提高,但由于胞内底物耗尽,甲硫氨酸产量未仍不理想。参考杰希公司,可尝试由发酵法获得大量O-乙酰高丝氨酸,并利用过表达的酶在体外催化甲硫醇与O-乙酰高丝氨酸生成甲硫氨酸。目前,对酪氨酸、半胱氨酸和脯氨酸的生产,从蛋白中分离仍是最经济的方法。由于植物可以合成甲硫氨酸,因此通过酶解方法利用稻草等农作物的废弃物生产甲硫氨酸是最经济的模式。2015年,Sanders等[6]对这种方法的成本进行了核算,证明了其具有一定可行性。但该法不适用于获得高纯度的L-甲硫氨酸,因为产物组成复杂,分离纯化难度大。甲硫氨酸的生物技术生产与理论值之间的差距证明,此项研究具有广阔的进步空间,对微生物发酵、酶法分解等多方面的探索仍有待深入研究。随着现代生物技术的发展,利用生物技术生产甲硫氨酸仍将是科研工作者面临的重要课题。

作者:王隆洋 闵伟红 单位:吉林农业大学食品与工程学院 小麦和玉米深加工国家工程实验室


    更多自然科学论文详细信息: 生物技术生产甲硫氨酸研究进展
    http://www.400qikan.com/mflunwen/skls/zrkx/127157.html

    相关专题:法学论文 集团财务管控模式


    上一篇:自动化技术对机械工程的应用
    下一篇:工业设计专业产学研培养模式

    认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


    品牌介绍