1远程质量监控系统总体设计
1.1远程监控需求分析
1)具有远程控制休眠、唤醒地震仪功能。地震仪在放炮之前唤醒,在停止施工期间休眠,地震仪可有选择的进行采集工作,这样大大节省了数据存储空间,降低了采集系统的功耗,延长了仪器的待机时间。
2)可查询如CF卡剩余空间,内置电池电量,位置经纬度,采集站状态等信息。对剩余空间、电池电量不足,采集站状态错误且不能远程修复的采集站及时安排工作人员更换。提高野外勘探作业的工作效率和灵活性,增强采集系统数据的可靠性。对读取回来的地震仪经纬度信息在上位机端进一步处理,可用于研发地震仪排列位置监测及远程防盗系统,保障野外勘探仪器的安全性。
3)远程控制地震仪自检功能,并能回收自检数据。地震仪系统自检内容包括检波器内阻、噪声、隔离度测试等,一次完整的自检过程通常需要2-5分钟,因此无缆存储式地震数据采集系统一般只在开机时自检一次,之后则无自检过程,因此采集站的部分工作状态,如检波器连接状态等仅仅反映了系统开机时的状态,不能作为现场质量监控的标准。法国UNITE系统由于没有远程监控功能,在自存储模式下通常是定时自检,自检时间为5分钟,在系统自检期间,地震仪停止其它一切工作,这样就减弱了地震仪野外勘探作业工作的灵活性。
4)有一定的远程修复及设置功能。如配置系统采样率、增益,系统复位等,出工前对地震仪的工作参数进行统一配置,布设到野外后,根据自检结果对有问题的地震仪进行参数设置和系统复位等操作,远程修复和解决问题,节省人力物力,提高无缆地震仪智能化控制程度。
1.2无线通信技术的选择
目前成熟的无线通信技术较多,如Wi-Fi、Zigbee、Bluetooth、GPRS、3G等,这些通信技术被广泛应用到生活及工业生产中,北斗短报文是近几年才发展起来的一种远距离通信技术,表1列出了应用以上几种通信技术典型模块的最大数据传输速率、传输距离、通信频带的参数值。
1.2.1Wi-Fi
Wi-Fi是IEEE802.11系列标准的统称,其传输速率快、安全性高,可集成到已有的宽带网络中,配合路由器组建有线、无线混合网络快捷方便。地震勘探仪器中Wi-Fi常用的组网模式有两种,即AP(无线访问接入点)模式和AdHoc(点对点)模式,在野外我们可以用架设AP基站的方式来拓扑无线局域网络的覆盖面积[3],而AP之间可以通过网桥设备连接,从而完成更大面积的网络覆盖范围,然而在实际勘探应用中AP基站和网桥设备架设困难,尤其应用于大道距的二维或者三维勘探工作中,需要更多的基站与网桥,较大的影响了施工进度。AdHoc是一种无中心、自组织、多跳移动通信网络,结点间通过分层的网络协议和分布式算法相互协调,实现了网络的自动组织和数据的相互交换,这种模式下地震仪可将其采集数据及工作状态信息接力式的传输回控制中心,美国WirelessSeismic公司的RT2无线遥测系统就是应用了这种多跳的数据传输方式,两个节点间通信距离的范围约为25~70m,然而这种工作模式会导致越靠近中央记录系统的节点积累的数据量越大,且在线性的网络拓扑结构中,数据传输的稳定性受通信距离与地形环境影响较大,数据通信的质量和速率难以得到有效的保证。
1.2.2GPRS、3G移动网络通信技术
移动网络通信技术已经成为人们工作生活中不可或缺的重要组成部分。该技术具有抗干扰能力强、传输速率高、网络覆盖面广、接入时间短、建设成本低等特点[10],在地震勘探中可被应用于移动网络信号覆盖范围内的地震台网远程监控,它提高了远程仪器维护的工作效率[11]。然而在地震勘探大道距(道距大于1km)地震深反射、折射探测作业中,由于其基站的信号覆盖范围有限,对于远程监控地震采集站工作存在一定的局限性。
1.2.3北斗短报文通信技术
北斗卫星作为北斗通信技术的中继,转发来自地面用户端的定位及通信请求,地面中心站控制端接收到请求后,解析消息后将解算出的位置信息传回用户端或将接收到的接收信息通过北斗卫星转发至另一地面用户端,达到卫星定位及通信的目的。北斗短报文通信技术在应用时具有信号覆盖范围广、安全、可靠性高和控制简单等特点,用户一次最大可以传送120个汉字的报文信息,而民用信息发送的频度通常为30-60s,接收信息则没有频度的要求,对于地震仪基本的控制命令收发及状态信息的传送,北斗短报文通信技术可以满足无缆地震仪基本状态监控数据传送的要求。
1.3系统结构设计
基于北斗的无缆存储式地震仪远程监控系统工作,系统由主控中心、北斗卫星、采集单元三部分组成,主控中心通过北斗指挥机完成对采集单元远程的控制及状态数据的回收工作,并对接收到的数据进行管理和存储。采集单元完成地震数据采集的同时,通过北斗通信模块可接收来自主控中心端的控制命令,并反馈执行结果信息。北斗卫星是控制命令及反馈信息传递的媒介。
2采集站单元设计
2.1硬件设计
地震检波器将地面振动信号转化为模拟电信号传输到FPGA数据采集单元,由FPGA完成数据的采集、缓存,并提供必要的测试、控制功能。AT91RM9200作为中央处理器,读取FPGA中存储的数据,并转存到CF存储卡中;通过SPI接口与Wi-Fi模块连接,实现近距离的无线数据传输功能;通过UART与GPS、北斗模块连接,为采集站提供高精度的授时、定位、远程通信功能,完成数据同步采集、位置信息获取、工作质量远程监控。采集站也可通过以太网接口与电脑终端连接,完成数据的回收及参数设置、检查工作。采集站在野外应用时采用太阳能和内置锂电池两种供电模式,电源智能管理系统会根据采集站当前工作的天气条件转换供电模式,保证仪器可靠、稳定的工作[12]。
2.2软件设计
采集单元的主控制器ARM9运行嵌入式Linux内核版本为2.6.31的操作系统,北斗通信进程完成对北斗模块接收信息的解析与执行,及执行结果的反馈。北斗短报文通信系统包括指挥机与用户机,指挥机是北斗短报文通信系统的中央控制器,它相当于一个服务器,负责接收来自多个用户机的报文,并可以控制多台用户机来完成相应的指令。用户机是北斗短报文通信系统的子节点,相当于一个客户端,负责将节点工作信息上传到指挥机,和接收来自指挥机的命令。北斗用户机在接收到指挥机传来的信息时,用户机会通过UART将信息内容上传给下位机系统,下位机会根据其数据传输的格式将信息进行解析,并根据信息包含的指令内容来执行相应的任务。
3上位机服务器软件设计及测试
主控中心由上位机、打印机、存储器、发电设备、北斗指挥机组成。上位机与北斗指挥机完成命令的选择与打包发送,及对采集站反馈信息的接收、显示、存储和打印处理。发电设备输出220V的交流电压,为上位机及其外设供电。此外上位机服务器软件通过对GoogleEarthAPI接口的调用,实现了对野外采集站排列位置的远程监测,为微动勘探实验中按两个嵌套式三角形方式排列的采集站传回的GPS位置信息在GoogleEarth中的显示。操作人员可根据地图显示软件中采集站的排列位置了解施工进度,获取采集站排列班报,完成布站人员调度等工作。为了了解远程监控系统的性能及数据传输丢包、误码情况,设计如下测试实验:将7台内置有北斗通信模块的采集站接好检波器放置在室外采集,由主控中心完成与各个采集站间的数据包收发,采用60s一次通讯频度,数据包长度为200字节,从500个样本数据中任选7个,分别用于七个站的通讯测试,主控中心将样本数据依次发给各个子站,并重复500次,子站收到数据包后向主控中心返回相同的样本数据。主控中心计算从开始发包到收包完成的时间间隔作为通信的延时,主控中心与采集站分别记录通信时丢包数,并根据与标准样本数据对比的结果记录错包数。
4结论
本文在现有无缆存储式地震数据采集系统中引入北斗卫星通信技术,实现对野外排列中采集站运行过程、工作状态及排列位置信息的可靠远程监控,且其监控范围不受道距限制。通过远程监测、修复采集站,合理的调度施工人员,提高施工效率,节省人力、物力。通过远程控制采集站休眠与唤醒,降低系统功耗,节省了存储空间。通过对采集站位置信息的监测,了解施工信息和进度,获取采集站排卫生部职称列班报。随着国家对北斗卫星导航系统的大力发展,以及对民用北斗卫星通信频度及带宽限制的逐步放开,基于北斗远程监控技术的引入将加快无缆地震仪器的在资源勘探领域的推广应用。
作者:杨泓渊 赵玉江 林君 张怀柱 张晓普 单位:吉林大学