社会心理学家Andrzej Nowak等人在1998年时曾提出对社会人际关系建立仿真模型的研究构想,并由此抛出“计算社会心理学”(computational social psychology)的学科概念。AndrzejNowak等人分析指出,人际关系就如同神经元之间互相连接和影响,因此可以将动态的人际过程类比为神经网络模型,从而进行社会仿真建模。社会学家Macy和Willer于2002年向社会学界详细介绍了ABMs模型,倡导使用ABMs模型进行社会学研究[23]。之后,Goldstone和Janssen将ABMs模型用于集群行为研究之中[24]。Smith和Conrey提出ABMs模型适合社会心理学研究,并通过实验证明ABMs模型比其它模型更适用于群体人际互动建模[25]
三、作为重要分支的计算社会心理学
社会心理学作为社会科学的重要分支之一,诸多研究者已开始关注和尝试采用计算社会科学研究范式和工具,专门探讨社会心理学领域的相关问题,同时社会心理学中也蕴含着丰富的理论假设,可源源不断地激发信息学家们的实证研究灵感。
上文已有提及,计算社会心理学作为一个学科概念,早在1998年就已经由社会心理学家An—drzej Nowak等人提出,当时的内涵是利用计算机社会模拟技术对社会群体心理及行为进行仿真、建模,属于信息科学与心理学的交叉学科。如今随着研究的不断推进、分析技术的不断发展,计算社会心理学的内涵也在不断演化。计算社会心理学已不局限于最初的社会仿真模拟,也开始关注使用信息科学技术作为存储和计算的工具,获得、存储与分析现代网络生活中海量人群的各种行为和互动数据,揭示人类心理特征和社会认知的形成机制及其发展规律。纵观近几年计算社会心理学领域的研究,大致可分为以下几个方向。
(一)大众情绪分析及其规律发现
互联网络空间中的大众情绪表达是计算社会心理学关注的重要问题之一。从事在线文本信息分析的传统信息学者一般只对文本情绪做简单分类,比如以“积极一消极”、“支持一反对”、“支持一中立一反对”这种简单二元或三元分类方式,划分分析对象的情感态度,而依据心理学的情绪结构理论,我们可将人类情绪划分为5~6类基本情绪,以及多种复合情绪,并对每一种情绪的效价和唤醒程度进行客观评级,继而获得更为丰富和精准的人类情感信息。前者简单的情感划分框架可称为“倾向性分析”,后者可称为“情绪分析”,两种分析可合称为“情感倾向性分析”[26]。已有研究证明,依据情绪心理学理论成果或成型情绪量表扩充构建的网络情感倾向性分析指标工具,能够有效地预测实际的社会经济现象,如对产品市场份额、影视票房、疾病或信息传播状况、政治选举结果、宏观经济形势的预测,以及对突发事件的预警等[27]。这类网络情感分析工具能够实时地测量网络大众情绪,不仅为传统情绪心理学理论研究注入活力,增强了社会科学的实用价值,而且还支撑扩展了信息科学中传统的文本情感分析技术。譬如,同时兼具信息科学和心理学背景的学者Johan Bollen等人,基于心境量表(Profile of Mood States,POMS)开发了网络情绪分类标准及其测量工具,并分析了2008年美国微博客网站Twitter.tom上高达几百万条微博条目(tweets)中情绪表达信息,发现Twitter微博条目中的“镇定(calm)”类情绪词汇量的每日变化趋势,可以成功预测2~6天后美国道琼斯工业指数的升降,预测准确率达到87%[28]。目前针对网络论坛、博客、社交网络的情感倾向性研究已有很多,而由于微博客应用的快速发展,基于微博客平台的情感倾向性研究有快速增长乃至爆发的趋势。研究者可基于微博客平台,针对某些重大社会事件,进行网民情感倾向监测和分析,从而准确把握社会大众态度和情绪的变化过程,这对民意问询、公共管理决策等都具有重要应用价值。
(二)经典心理学假设在网络大数据层面上的验证
心理学是研究人类心理和行为的科学,自诞生以来已建立和发展起庞大的理论假设库。这些假设通常要经过问卷调查、实验设计、统计分析等一系列研究程序和方法进行验证,其中往往存在非代表性取样、研究情境不真实等问题,因此传统心理学研究方法论存在一定缺陷。然而,计算社会心理学研究能收集和分析实时更新的海量人类信息数据,这些数据具有大范围、真实和完全描述的特征,能够显著有效地解决非代表性取样问题,并避免实验条件真实性的拷问。因此,在大数据技术时代背景下,可采用信息科学技术或计算社会科学新研究范式,对已有的可计算心理学理论假设进行逐一检验和发展。譬如,美国心理学家Markey夫妇通过分析美国大选期间搜索引擎网站Google.com上各州的色情类词汇搜索量波动趋势,发现如果某政党“票仓州”所支持的参选者最终确实获胜,选举之后该州的色情类词汇搜索量会快速上升,并显著高于其它州。该搜索行为现象验证了进化心理学中经典的“挑战假说(challenge hypothesis)”[29]。Golder和Macy则通过分析2008年2月至2010年1月之间Twitter.com上正向情绪类词汇和负向情绪类词汇出现频率的波动趋势,结果发现正向情绪随季节变化而变化,未发现支持日照绝对时长与正向情绪之间存在显著相关的证据,但验证了情绪心理学中有关情绪与季节、生物节律问关联的“阶段转换假说(phase—shift hypothesis)”[30]。
(三)海量信息中的社会心理新规律发现
现代互联网络技术的迅速发展给人类活动带来了深远影响,用户可以使用BBS、博客、社交网络、微博客等多种工具或方式将自己当下的观点、状态和情绪表达出来;同时随着信息科学技术的不断成熟,使研究者可轻松获得这些海量的网上信息,并从中发现隐藏的、有价值的人类社会心理新知识。譬如,美国心理学家曾发现,利用谷歌网站应用软件“谷歌趋势(Google Trends)”记录的网民对于自杀、自残、抑郁类词汇的搜索量数据,发现其与现实中的大众自杀、自残数据呈显著统计相关关系:在成人群体中呈显著负相关,在青少年群体中呈显著正相关[31]。再比如,通过对新浪微博海量信息的分析,中国社会心理学家周欣悦教授及其团队初步发现,自然灾害之后公众对于“公平”的关注会下降,具体表现在公平类词汇的每日词频变化趋势:在地震后的5~6天会有一个词频低谷,而在大约20天后会有一个高峰。