电站热工过程参数测量是火电厂在线监测机组设备运行状态的主要手段,并且其提供的数据也是控制操作、设备维护和经济核算的重要依据.通过对测量数据的分析,可对火电厂各设备的性能及运行状态进行跟踪、监督和评估,进而及时对设备进行运行状态调整和维护.热工过程参数测量包括对温度、压力、流量、料位、燃料组分等参数的监测和仪器、仪表的检测.电站锅炉某些热工过程参数(燃煤发热量、磨煤机负荷、烟气含氧量、飞灰含碳量等)难以实时在线测量,从而影响锅炉的运行效率和经济性.为此,近年来将软测量技术引入了电力行业[1G2].软测量技术将自动控制理论与实际热力生产过程相结合,采用间接测量方法,依据某种最优化原则,利用一组易于实时在线测量且与被测变量密切相关的过程变量(辅助变量或二次变量),构建软测量模型,通过数学计算或估计方法实现对参数的测量.
1软测量建模方法解析
典型的软测量模型结构如图1所示[3].与传统仪表检测技术相比,软测量技术具有通用性和灵活性强,易实现且成本低等优点[1]。影响热工过程参数软测量精度的主要因素为数据的预处理方法、辅助变量的选择、模型的算法和结构等[4G5].由于现场采集的数据存在一定的误差以及仪表测量误差等,因此在建立软测量模型时需要对建模数据进行预处理,以消除误差.此外,还需对算法中间及输出结果进行有效性检测,以避免输出不合理的数据.另外,辅助变量需要通过机理分析进行初步确定,并且对其的选取需要考虑变量的类型、数量和测点位置等,同时需要注意辅助变量对系统运行经济性、可靠性和可维护性等的影响,从而简化软测量模型和提高软测量精度.辅助变量选取的最佳数量与测量噪声、过程自由度及模型不确定性等有关,其下限值是待测主导变量的数量.所选辅助变量应与主导变量密切相关,且为与动态特性相似的可测参数,具有较强的鲁棒性和抗过程输出或不可测扰动的能力,易于在线获取,能够满足软测量的精确度要求.由于某些热工测量对象的辅助变量类型和数量很多,且各变量之间存在耦合关系,因此为了提高软测模型性能和精度,需对输入辅助变量进行降维处理.由于在工业过程中通常采用同时确定辅助变量的测定位置和数量方法,因此对测点位置的选择原则同于变量数量的选择原则.在构建软测量机理模型过程中,要求具有足够多能够反映工况变化的过程参数,并运用化学反应动力学、质量平衡、能量平衡等各种平衡方程,确定主导变量与一些可测辅助变量的关系.但是,经若干过程简化后的软测量机理模型难以保证测量精度,且有很多热工过程机理尚不明确,因此难以对软测量进行机理建模.针对复杂的非线性热工过程,辨识建模方法通过现场数据、试验测试或流程模拟,获得工况变化过程中的输入(辅助变量)和输出(主导变量)数据,根据两者的数学关系建立软测量模型.该方法主要有基于统计分析的主元分析(PCA)法和偏最小二乘(PLA)法、基于人工智能的神经网络(ANN)法、基于统计学习理论的支持向量机(SVM)法、模糊理论法等[6].
1.1主元分析方法
PCA法通过映射或变换对原数据空间进行降维处理,将高维空间中的问题转化为低维空间中的问题,新映射空间的变量由各原变量的线性组合生成[7].降维后数据空间在包含最少变量的同时,尽量保持原数据集的多元结构特征,以提高模型精度.通常,采用该方法对现场采集的系统输入输出变量数据进行相关性分析,以优选辅助变量集,并利用对应的输入输出变量建立预测模型.但是,该方法受样本噪声影响较大,建立的模型较难理解.PCA法基于线性相关和高斯统计的假设,而核主元分析(KPCA)法对非线性系统具有更好的特征抽取能力,因而针对飞灰含碳量等呈非线性特征的变量,基于KPCA法建立其软测量模型,效果较好[8].
1.2偏最小二乘法PLA法
通过计算最小化误差的平方和,匹配出数据变量的最优函数组合,是一种数学优化方法.该方法用最简化的方法求出某些难以计算的数值,通常被用于曲线拟合.偏最小二乘回归(PLSR)法建立在PCA原理上,主要根据多因变量对多自变量的回归建模,在解决样本个数少于变量个数问题时,特别是当各变量的线性关联度较高时采用PLSR法建立其软测量模型更为有效.
1.3人工神经网络
ANN法在理论上可在不具备对象先验知识的条件下,构造足够的样本,建立辅助变量与主导变量的映射关系,从而通过网络学习获得ANN模型.ANN由许多节点(神经元)相互连接构成,每个节点代表一个特定的输出函数(激励函数),2个节点间的连接代表通过该连接信号的权重(ANN的记忆).选取ANN运算模型的辅助变量和主导变量后,为使待测的主导变量近似于实际测量变量,还可利用最小二乘法、遗传算法、聚类法等神经网络算法训练己知结构网络,通过不断调整结构的连接权值和阈值训练出拟合度最优的ANN模型.ANN模型采用分布式并行信息处理算法,具有自学习、自适应、联想存储(通过反馈网络实现)、高速寻找优化解、较强在线校正能力、非线性逼近等特性,其在解决较强非线性和不确定性系统的拟合问题具有较大优势[9],因此成为应用最广泛的一种热工过程参数软测量建模方法.但是,神经网络系统受训练样本质量、空间分布和训练算法等因素影响较大,外推能力较差,受黑箱式表达方式限制,模型的可解释性较差.当实际样本空间超出训练样本空间区域时,模型输出误差较大.因此,实际工业过程中需定时对该方法的参数进行校正.ANN还包括反向传播神经网络(BP)和径向基神经网络(RBF).BP模型将样本输入输出问题变为非线性优化问题,采用最优梯度下降算法优化并迭代求得最优值.RBF包含输入层、隐含层(隐层)和输出层,为3层结构,隐层一般选取基函数作为传递函数(激励函数),输出层对隐层的输出进行线性加权组合,因此其节点为线性组合器.相比BP模型,RBF模型训练速度快,分类能力强,具有全局逼近能力等.
1.4支持向量机法SVM法
以结构风险最小化为原则,是一种新型针对小样本情况的机器统计学习方法.其需要满足特定训练样本学习精度的要求和具备准确识别任意样本的能力.该方法根据有限的训练样本信息尽可能寻求模型复杂性和学习能力间的最优关系,从而有效解决了基于经验风险最小化的神经网络建模方法的欠学习或过学习问题[10G11],且泛化能力强,能够保证较小的泛化误差,对样品依赖程度低,可以较好地对非线性系统进行建模和预测,是对小样本情况分类及回归等问题极优的解决方法.但是,当样本数据较大时,传统训练算法复杂的二次规划问题会导致SVM法计算速度较慢,不易于工程应用,抗噪声能力较差等,且参数选择不当会使模型性能变差.目前,对SVM法还没有成熟的指导方法,基于经验数据建模,则对模型精度的影响较大.对于工业过程对象,许多在SVM法基础上进行改进的算法和混合算法被用于软测量建模,并已取得了良好的试验效果.如基于最小二乘支持向量机(LSGSVM)法的建模方法将最小二乘线性系统的误差平方和作为损失函数代替二次规划方法,利用等式约束替代SVM法中的不等式约束.由于LSGSVM法只需求解1组线性等式方程组,因此显著提高了计算速度和模型的泛化能力[12G13].与传统SVM法相比,其训练时间更短,结果更具确定性,更适合工业过程的在线建模.1.5模糊理论法模糊理论法根据模糊逻辑和模糊语言规则求解新的模糊结果[14].由专家构造模糊逻辑语言信息,并转化为控制策略,从而解决模型未知或模型不确定性的复杂工业问题,尤其适合被测对象不确定,难以用数学方式定量描述的软测量建模[15G16].模糊理论法不需要被测对象的精确数学模型,但模糊系统本身不具有学习功能,如果能够将其与人工神经网络等人工智能方法相结合,则可提高软测量的性能.
2软测量技术研究现状
目前,软测量的机理、偏最小二乘、人工神经网络、支持向量机、模糊建模等方法均属于全局建模方法,而这些方法均存在待定参数过多、在线和离线参数难以同时用于建模、模型结构较难确定等问题.因此,20世纪60年代末,Bates等[17]提出了将几个模型相加的方法,该方法可以有效提高模型的鲁棒性和预测精度.该方法将系统首先拆分为多个子系统,然后分别对每个子系统建模并相加.全局模型被视为各子模型的组合,从而不仅可提高模型对热工过程参数的描述性能,而且较单一模型具有更高的精度.通常,在多模型建模时,首先通过机理分析建立带参数的机理模型,并利用输入输出数据对模型待测参数进行辨识.而对机理尚不清楚的部分,则采用数据建模,即根据输入输出数据构建补偿器进行误差补偿.基于此,本文以主要热工过程参数为对象,综述软测量技术的研究现状.
2.1钢球磨煤机负荷、风量和出口温度
钢球磨煤机(球磨机)制粉系统的用电量在电站厂用电中占比可高达15%.目前对球磨机煤量的测量方法有差压法、电流法、噪音法、物位法、振动法等[18],但这些方法都难以精确地测量球磨机煤量,从而导致制粉系统自动控制品质欠佳,使电耗量增加.建立球磨机负荷与相关辅助变量的关系,可实现球磨机负荷、煤量的软测量.辅助变量可选为给煤量、热风量、再循环风量、球磨机出口温度及出入口压差、球磨机电流等[19].王东风和宋之平[20]采用前向复合型人工神经网络建立了基于分工况学习的变结构式负荷模型,以测量球磨机负荷,其正常运行工况下采用延时神经网络法负荷模型,球磨机出口煤量较小(趋于堵煤)时采用回归神经网络法负荷模型,并通过仿真试验和实测数据证明了该建模方法的可行性和有效性,对运行指导也取得了较好的效果.司刚全等[21]提出了基于复合式神经网络的球磨机负荷软测量方法,选取球磨机噪音及出入口压差、出口温度、球磨机电流等作为辅助变量,获得了球磨机负荷变化规律.赵宇红等[22]基于神经网络和混沌信息技术建立了球磨机出力软测量模型,仿真结果表明该模型能够预测稳态和动态过程中的球磨机出力.汤健等[23]则提出了基于多源数据特征融合的软测量方法,其采用核主元分析提取各频段的非线性特征,建立了基于最小二乘支持向量机的模型,该算法运算精度较高.张炎欣[24]在即时学习策略建模框架下,首先通过灰色关联分析方法确定主要的辅助变量,随后采用混合优化算法进行支持向量机模型计算,发现其结果相比标准支持向量机模型和BP神经网络模型具有更好的预测性能.磨煤机一次风量的准确测量是确定合理风煤比,提高锅炉燃烧效率的重要因素.因此,杨耀权等[25G26]基于BP神经网络选取42个辅助变量建立了磨煤机一次风量的软测量模型,通过对某电厂数据的测试,验证了该方法较现场流量测量仪表输出值更准确,同时基于支持向量机回归方法建立的风量模型也较流量测量仪表的精度高,且能够适应机组变化.此外,梁秀满和孙文来[27]基于热平衡原理进行了机理建模,实现了球磨机出口温度的软测量.
2.2煤质
电站锅炉入炉煤质对机组安全、经济运行影响较大.对此,刘福国等[28G29]利用烟气成分、磨煤机运行状态、煤灰分和煤元素成分等建立了入炉煤软测量机理模型,实现了入炉煤质元素成分和发热量的在线监测.董实现和徐向东[30]利用模糊神经网络构建辨识模型,并进行了锅炉煤种低位发热量模型参数的辨识,其辨识误差在2%以内.马萌萌[31]利用BP神经网络法进行建模,研究了煤质元素分析,并利用遗传算法对BP神经网络各层连接值进行了提前寻优,结果表明经遗传算法优化后的模型较单纯BP神经网络模型误差更小.巨林仓等[32]采用遗传算法与BP网络联合的建模方式,分析了煤粉从制粉系统到完全燃烧的过程,结果表明煤质在线软测量模型能够有效预测煤种挥发分、固定碳含量和低温发热量.
2.3风煤比
电站锅炉各燃烧器出口的风煤比不能相差太大,否则可能造成锅炉中心火焰偏移、燃烧不稳定、结焦等问题.对此:金林等[33]基于气固两相流理论进行了机理建模,根据乏气送粉方式下风粉混合前后的压力差计算了风煤比,通过理论推导和仿真试验发现,风煤比计算值与混合压差呈良好的对应关系;陈小刚和金秀章[34]通过对风煤比机理模型的研究,发现一次风与煤粉混合后管道内压差呈明显的线性关系;刘颖[35]将给粉机转速、风粉混合前后动压、风粉温度等作为辅助变量,采用机理建模与支持向量机相结合的方法,进行风煤比软测量建模,仿真结果显示所建模型性能优于RBF神经网络模型.
2.4烟气含氧量
目前主要使用热磁式传感器和氧化锆传感器等测量锅炉烟气含氧量,其存在测量误差大、反应速度慢、成本高、使用寿命短等问题.对此,采用软测量方法测量烟气含氧量.锅炉烟气含氧量主要受煤质、煤粉未完全燃尽、炉膛漏风等因素影响,因此选取总燃料量、风机风量和电流、再热蒸汽温度、汽包压力、炉膛出口烟温、锅炉给水流量等参数作为辅助变量.韩璞等[36]构建了电站锅炉烟气含氧量的复合型神经网络软测量模型,并在不同机组负荷下通过实测方法验证了该模型的有效性.卢勇和徐向东[37]提出了基于统计分析和神经网络的偏最小二乘(NNPLS)法建立锅炉烟气含氧量软测量模型的方法,并进行了稳态和动态建模,结果表明所建模型具有很强的泛化能力.陈敏[38]引入主元分析理论和偏最小二乘法进行了辅助变量的优化选取,并采用BP神经网络算法实现了对烟气含氧量的预测分析.熊志化[39]进行了基于支持向量机的烟气含氧量软测量,通过8个辅助变量进行训练,并得出优于传统氧量分析仪和RBF神经网络模型的结论,尤其是在小样本情况下.张倩和杨耀权[40]采用了类似的支持向量机回归模型取得了良好的仿真结果.章云锋[41]提出了基于最小二乘支持向量机的烟气含氧量软测量模型.张炎欣等[24,42]采用基于即时学习策略的改进型支持向量机建立了烟气含氧量软测量模型,得到了与球磨机负荷相似的结论.王宏志等[43]构建最小二乘支持向量机模型时应用粒子群算法解决了多参数优化的问题,并将其应用于烟气含氧量建模中后,获得了较好的效果.赵征[44]等采用机理分析与统计分析相结合的建模方法,建立了一系列局部变量的软计算模型,较好地反映烟气含氧量的变化.
2.5飞灰含碳量
燃烧失重法是测试飞灰含碳量的传统分析方法.该方法测试时间长、所得结果无法实时反映飞灰含碳量,而反射法、微波吸收法,由于缺乏在线测量技术或成本较高,难以大规模应用于在线测量[45].煤质和锅炉运行参数是影响飞灰含碳量的主要参数,因此燃煤收到基低位发热量、挥发分、灰分、水分,以及锅炉负荷、磨煤机给煤量、省煤器出口烟气含氧量、燃烧器摆动角度、炉膛风量和风压等参数可被选为辅助变量.对于飞灰含碳量的软测量难以采用机理建模方法.而BP神经网络因其强大的非线性拟合能力和学习简单的规则等优点被广泛用于飞灰含碳量的软测量.周昊等[46]采用BP神经网络算法建立了电站锅炉的飞灰含碳量模型,该模型输出结果与试验实测结果基本吻合.李智等[47]采用BP神经网络进行了飞灰含碳量的建模和分析,得到了良好的预测结果.赵新木等[48]选取11个辅助变量进行了改进BP神经网络的计算和预测,并探讨了燃烧器摆动角度、锅炉燃料特性、煤粉细度、过量空气系数等单变量对飞灰含碳量的影响.王春林等[49]和刘长良等[50]分别采用基于支持向量机回归算法和最小二乘支持向量机算法进行建模,结果显示支持向量机法相比BP神经网络法等建模方法具有学习速度快、泛化能力强、对样本依赖低等优点.陈敏生和刘定平[8]利用最小二乘支持向量机建立了飞灰含碳量软测量模型,并采用KPCA法提取变量特征数据处理非线性数据,通过在四角切圆燃烧锅炉上的仿真试验验证了所建模型的有效性和优越性.
2.6燃烧优化
高效低污染是电站锅炉燃烧优化的目标.顾燕萍等[51]基于最小二乘支持向量机算法建立了锅炉燃烧模型,进行了排烟温度、飞灰含碳量、NOx排放量等参数的软测量研究,随后采用遗传算法对锅炉运行工况进行寻优,得到了燃烧优化方案,研究结果表明该算法比BP神经网络算法性能更优越.王春林[11]建立了基于支持向量机,并以锅炉主要燃烧试验数据为辅助变量的软测量模型,其将遗传算法与支持向量机模型相结合,使得对飞灰含碳量、排烟温度、NOx排放量的软测量取得了良好的优化效果.高芳等[52]以锅炉热效率和NOx排放量为输入参数,建立了最小二乘支持向量机模型,试验结果表明模型输出误差很小,良好的参数组合可为锅炉优化运行提供指导.
2.7其他热工参数
对于主蒸汽温度、汽包水位、省煤器积灰、烟气污染物排放量等参数,学者们也进行了软测量研究.熊志化等[53]对主蒸汽流量进行了软测量,以给水温度等为辅助变量的历史数据仿真结果表明,支持向量机算法较RBF神经网络算法具有明显优势.何丽娜[54]提出了基于现场数据的神经网络建模,与传统神经网络建模相比,无需数学表达式和传递函数,只需要现场数据,以主蒸汽温度系统为建模对象,采用主元分析法对建模数据进行预处理,降维后,通过分析过热器运行机理确定了辅助变量,并合理预测了主蒸汽温度.梅华[16]提出了基于模糊辨识的自适应预测控制算法,并应用于发电厂主蒸汽温度控制中,仿真结果表明该算法具有良好的负荷适应性.李涛永等[55]以给煤量设定值为输入,主蒸汽压力为输出,利用聚类分析方法将热工过程的非线性问题分解并转化为若干个工况点的线性问题,得出了辨识模型及其拟合曲线.张小桃等[56]根据机组运行机理,利用主元分析法、多变量统计监测理论等确定不同机组运行过程中影响汽包水位变化的主导因素.王少华[57]建立了基于机理分析与数据统计分析方法相结合的锅炉汽包水位软测量模型,试验结果表明该模型可较好地反映锅炉参数在典型扰动工况下的汽包水位动态特性.王建国等[58]采用机理分析建模,以省煤器进出口烟气温度、省煤器管壁温度、烟气流速等为辅助变量,对在线监测锅炉省煤器积灰的软测量进行了分析.杨志[59G62]选取经遗传算法优化后的BP神经网络模型对SO2排放量进行了预测研究,其选取了硫分、负荷、给煤量、过量空气系数、排烟温度等参数作为模型输入变量,SO2排放量作为输出变量,试验结果表明该方法能够满足在线监测SO2排放量的要求.
3结语
由于某些主要热工过程参数难以实现在线测量,从而影响电站锅炉的安全、经济运行.对此,本文解析了近年来利用PCA法、PLA法、ANN法、SVM法以及模糊理论法的建模方法,并以球磨机负荷和风量、煤质以及出口温度、烟气含氧量、风煤比、飞灰含碳量、汽包水位、主蒸汽温度、省煤器积灰、污染物排放量等参数为对象,综述了各种软测量技术的研究现状.研究结果表明,软测量技术的引入,使得难以在线测量的热工过程参数监测成为可能.
作者:罗嘉 吴乐 单位:广东电网有限责任公司电力科学研究院