一、整合知识体系,实现原子物理学课程教学内容的现代化,培养学生的创新精神
传统的原子物理学教科书大多按照历史发展的时间顺序,即按照人类认识原子世界的具体过程,从“光谱”这一概念入手组织教学。这种教学的特点是以光谱实验事实为主线,以玻尔的旧量子论为重点,用半经典半量子论的方法讲授课程。但是对于这样的教学内容和教学安排,学生并不容易掌握,而且让学生花费大量的时间掌握这些不易理解最终又要被量子论修正的理论,看起来确实是没有必要的。因此传统的教学内容有些陈旧并且不易理解,也不能及时反映现代物理理论和科学技术发展的最新水平,因此必须用新观点和新思想重新组织教学内容,以全新的角度构建这门课程的知识体系。在材料物理专业学生原子物理学的教学中,可直接用量子力学的理论研究原子结构及其运动变化规律。原子中电子的运动都遵循着量子力学的理论,而传统教学中以学生不好理解的旧量子论为基础,再用量子力学修正的做法并不符合学生的认知规律。因此可以直接用量子力学的理论来研究原子结构及其规律[1],而将旧量子论仅仅作为一种铺垫。实际教学中,可以先简明扼要地介绍旧量子论的核心内容,而不必过多讲授轨道的概念。可以删除椭圆轨道理论和碱金属原子的原子实极化和轨道贯穿等内容。这样就实现了原子物理学课程知识体系现代化的第一步,用最新的量子力学理论成果讲述原子中电子的行为。量子力学理论是从特有的波函数、哈密顿算符以及薛定谔方程等形式化的理论,以高度浓缩的数学形式借鉴了各学科的研究成果,从而形成了一套独特的理论体系。实际讲授中可以薛定谔方程为主线,由薛定谔方程引入微观粒子的波函数,建立二阶偏微分方程,从而定量描述微观粒子客体的运动规律。一方面,根据不同的势能表达,建立各种原子的薛定谔方程并求解,向学生阐述这些解的物理意义,并与实验事实相对照,从而加深学生对原子结构的认识,进而把握原子内部结构的变化规律。另一方面,要突出德布罗意物质波的统计解释。传统教学内容总是先从经典物理学的角度和观点看“粒子”和“波”这两个概念,指出二者之间的相互排斥性,然后再引出微观粒子的波粒二象性,并强调波粒二象性是微观粒子客体区别于宏观客体的一种属性。这种讲法常常会使学生产生困惑,觉得微观客体很不可思议,超过了他们的认知和理解范围。因此在讲授时可以直接给出对德布罗意波的正确解释,阐明微观粒子的波动性并非指粒子和波一样弥漫到整个空间,它本质上是粒子位置分布的一种概率波。为了更好实现教学内容的现代化,还应当在教学中穿插关于物理学前沿知识的专题,介绍近代物理学中和原子物理相关的最新发展和高新技术。在讲授某些概念和原理时,可适当介绍最新应用成果和科技前沿。例如在讲授原子的能级和激发时,可以详细介绍激光产生的原理、特性以及应用等;在讲到隧道效应时,可以介绍扫描隧道显微镜的原理及其发展;在讲授X射线的吸收和透射时,可以介绍在医学诊断和治疗中具有广泛应用的CT技术。增设这些前沿内容,一方面是为了加强理论知识与实际的联系,使内容变得生动,提高学生的学习兴趣,另一方面可以让学生体会到当今科学与技术、生活的高度融合,开扩他们的视野,激发他们的创新热情。原子物理学的发展伴随了20世纪物理学的发展,并且随着新的实验发现、新模型新理论的建立而不断深入[2]。从历史上看,原子物理学的每次重大突破,都经历着非常复杂曲折的过程,同时闪耀着物理学家创新精神的光芒。在课堂教学中,教师可以结合现代化的教学内容,抓住典型的历史案例进行教学,让学生了解到科学探究过程的艰辛,体会创新精神的可贵性,并学习科学家们为了探求客观世界真理不畏艰辛、执着追求的科学品质和创新精神。
二、实现教学方法的现代化,突出学生的主观能动性,培养学生的创新能力
教师教学的主要任务是传授知识同时引导学生入门,为了更好地突出学生的主观能动性和培养学生的创新能力,教师有必要改进原有的教学方法。除了教师讲授、学生听讲的传统教学方式外,还必须引入更加现代化的教学方式进行有益的补充[3,4]。在原子物理学课程的教学中,近代物理实验应当占有举足轻重的地位,很多重要的理论和结论都是由实验直接引出的。因此要特别重视近代物理实验,课堂教学时可以结合近代物理实验,如夫兰克—赫兹实验、塞曼效应等。在实验演示中,可以增强学生对微观世界的认识,为他们提供更好的认识微观世界的途径。同时,在现有的实验条件允许时,可以让学生先动手做实验,然后针对实验结果进行分析,总结规律,从理论上给予解释,从而加深学生对书本知识的认识和理解。在此过程中,可以给学生创造机会重现当年物理学家们探究的过程,让学生能够亲身参与科学实验与探究的过程,从而培养学生的创新思维能力。另外可以指导学生撰写与课程相关的小论文,帮助培养学生的创新能力。学生撰写的小论文,作为平时成绩的一部分,计入学生的总评成绩。论文的题目可以围绕原子物理学的基本规律和应用,由学生自己选题、搜索资料并独立撰写。不仅可以激发学生的主观能动性,拓宽他们的知识面,还可以培养学生独立思考、勇于创新的品质。在这种教学过程中,可以充分体现教师引导、学生为主体的教学理念和方法,加强学生在专业课程学习中的主观能动性,同时有意识地培养他们的创新能力。
三、实现教学手段的现代化,为学生创新精神和能力的培养创造情境条件
原子物理学课程的内容包含的信息量较大,尤其是需要运用深奥的数学公式处理问题,因此计算量大,而且物理图像也比较抽象,学生往往受此困扰对该课程的学习产生畏难情绪。如果学生有畏难情绪,那么会缺乏学习的主观能动性,这对学生的学习、创新精神和能力的培养都是非常不利的。为了解决这一问题,可以利用现代化的教学手段,编辑图文、声音、视频并茂的多媒体辅助课件,使抽象的物理过程和物理图像能够形象化[5],并且可以通过交互式的教学方法,增进师生之间的互动与交流。制作电子教案,采用多媒体手段辅助课堂教学,可以在教师讲授时创造相关物理情境,让学生可以畅游在物理学的海洋中,从中汲取有益的信息。例如在讲到卢瑟福散射实验时可以介绍散射技术的背景和仪器设备;介绍隧道扫描显微镜,可以用多媒体课件展示最早的排列原子的“IBM”图片。通过这种直观的展示,能够让学生在课堂随时感受科学的魅力,增强他们学习的兴趣,也增强他们对创新的渴望和动力。另外可以建立课程的教学网站,作为对课堂教学的补充,在课堂之外提供给学生更多和更生动的学习资源[6],同时可以增设留言板,进一步加强师生之间的互动和交流。在这些现代化的教学辅助手段下,学生有机会接触更多的知识,更多地思考与课程相关的内容,为学生创新精神和能力的培养创造客观条件。原子物理学是20世纪物理学中最重要的组成部分之一,它的发展是众多物理学家的思想结晶,其中包含着十分丰富的物理文化内涵。任课教师在传授知识的同时,应充分开发原子物理学作为一门专业基础课程对学生的教育功能,通过课程教学内容、教学方法、教学手段的现代化更好地培养材料物理专业学生的创新精神和创新能力。
作者:李新 彭顺金 单位:武汉科技大学