1GPS-RTK在地籍测量中的应用
地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。
1.1选定基准站
基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。
1.2基于GPS-RTK的测绘作业
GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。
1.3内业处理
测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。
2GPS-RTK在地籍测量中的质量控制
GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。
2.1构建控制网约束测量数据
控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。
2.2排除干扰控制测量误差
虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。
3结束语
GPS-RTK测量技术在地籍测量中的应用,降低地籍测绘的难度,很大程度上提升测量水平和能力,满足地籍测量的数据需求。GPS-RTK发挥严谨、精准的优势,为地籍测量提供所需数据,规避测量过程中的风险问题,以免引发数据问题。结合GPS-RTK的实践应用,确实具备测绘优势,保障地籍测量数据的真实、稳定。
作者:王黎明 单位:深圳市地籍测绘大队