期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:

基于遗传算法的智能排课模型(2)

1.1.6 终止条件 
  遗传算法应在何时终止是一个很重要的问题。终止的过早,算法尚未收敛,所得结果并非最优;终止的太迟,浪费时间以及硬件资源[8]。所以,该文中遗传算法的终止条件有两个:一是当一轮适应度函数计算结束后,种群的平均适应度值满足期望值,算法终止;二是种群进化到设定的最大代数,算法终止。 
  1.2 智能排课的算法流程 
  遗传算法通过选择、交叉和变异操作来模拟遗传过程。根据适应度值来选择染色体使适应度值大的个体有更大的概率存活。通过适应度函数评估每个个体实现了“适者生存”。遗传操作后,被选择的个体形成了下一代种群,然后进行下一轮的进化。 
  根据遗传操作,基于遗传算法的智能排课模型的工作流程如下: 
  1)课程排程解决方案的初始化:为课程分配资源,并记录信息; 
  2)使用适应度函数计算染色体的适应度值; 
  3)采用轮盘赌法选择优良个体,并产生下一代种群; 
  4)使用自适应交叉和变异方式进行遗传操作,产生新的个体; 
  5)判断算法是否满足终止条件。如果是,得到全局最优解,则跳转到7),如果没有,跳到2); 
  6)从种群中获取信息,对信息进行解码并输出结果; 
  7)算法结束。 
  2 实验与分析 
  2.1 问题明确 
  根据已经建立的数学模型和对于排课问题的分析,考虑到不同的教育系统,我们应该明确具体问题:课程分类,时间片划分和约束条件归纳。 
  2.1.1 课程分类 
  大学的课程种类较多,存在优先级别的差异,课程自身又有其特点,不能一概而论,因此要对课程进行分类。该文将课程分为A~F类六个等级,优先级依次递增,如表1所示: 
  2.1.2 时间片划分 
  周六、周日不安排课程,从周一至周五将每天的上课时间划分成五个时间片,每门课程每次上课最少占用一个时间片。对时间片编号如表2所示。 
  2.2 性能比较 
  为了让仿真实验的结果更有可信,用改进后的遗传算法和简单遗传算法进行比对实验,并对实验的结果进行比较。对比结果如图3所示: 
  3 结论 
  分析智能排课问题的特点,并结合遗传算法的特点本文采用遗传算法来解决问题。同时针对简单遗传算法的缺点进行了改进,使用自适应遗传操作方式和带有冲突检测的种群初始化方式。 
  实验结果表明,改进后的遗传算法可以在一定程度上解决智能排课问题,降低了教学人员的工作量。可以在高校教育管理的智能化中起到重要作用,具有一定的推广价值。 
  参考文献: 
  [1] 宗薇.高校智能排课系统算法的研究与实现[J].计算机仿真,2011,28(12):389-392. 
  [2] 廖远,黄勤,曹培霞.基于三维编码的自适应遗传算法在排课系统中的应用[J].计算机与现代化,2008(12):23-28. 
  [3] 李于吉.基于仿生算法的高校智能排课系统研究[J].现代电子技术,2012(14):121-123.


更多计算机论文论文详细信息: 基于遗传算法的智能排课模型(2)
http://www.400qikan.com/mflunwen/kjlw/jsjlw/3326.html

相关专题:西安论文翻译 坚守法律底线


上一篇:图形处理器中平面裁剪算法并行化的设计与验证
下一篇:一种改进的BP神经网络算法在入侵检测中的应用

认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


品牌介绍