一、创造情境,精心设疑
创设情境的同时,往往会伴随设疑的产生,良好的设疑可使学生进入高效思维。例如,讲“圆的定义”一节,首先联系,实际展示蓝球、足球的纵断面,自行车车轮等,让学生感知“圆”,然后提出疑问:车轮为什么做成圆形不做成别的形状?你知道车轮曾经有过方形的历史吗?又如讲三角形全等判定定理“ASA”时这样引入:“有一块三角形玻璃,一同学不小心打碎了,碎成两块,现在要你去配一块同样大小玻璃,怎么办呢?若带一块去可以吗?应该带哪块呢?”等等。创造这样的教学情境和设疑,从而形成学生的认知冲突,激发求知欲,变“要我学”为“我要学”“我想学”。创设好的情境,提出好的质疑,比解决一个问题更重要,因为解决问题也许是一个数学上或实验上的技能而已,而提出新的问题,新的可能性,从新的角度去看旧的问题,需要创造性的想象力,而且标志着科学的真正进步。
二、探究小结,联想创新
马克思说:“科学教育的任务是教育学生去探索创新。”学生只有通过探究问题,才能发展学生探索精神和创新能力。教学中,教师应在精心设疑的前提下,鼓励学生从多角度,多方位去探究,可以自主探究,也可以合作探究,让他们去追求与众不同,但又合情合理的答案。他们在探究过程会遇到各种各样的问题,困难,就会产生新的想法,新的见解,从而拓展了他们的学习思路,启动了学生的联想思维,培养了他们的创新精神。如在“圆的外心、内心”这一部分,学生通过探究小结,说出了外心的构成:三角形三边垂直平分线的交点,然后让学生积极展开联想,学生就会联想到几何中的两种线:垂直平分线和角平分线,垂直平分线的交点是外心,那角平分线交点会是内心吗?这样就培养了他们创造性的发展。还有讲四边形中点连线会构成什么图形时?让他们探究说出结论,继而发散思维,大胆联想,由封闭式常规性题目经过变式改造,学生会联想并探索出正方形各边中点连线是正方形、矩形各边中点连线是菱形、菱形各边中点连线是矩形,还可探索出对角线互相垂直的四边形各边中点连线是矩形,对角线相等的四边形各边中点的连线是菱形,这样便让学生对各种四边形的性质和判定的理解和掌握升华到了一个高度。联想是思维的翅膀,有效进行联想训练,有助于学生保持旺盛的思维生命力,有助于学生克服思维惰性,培养学生各种能力。
三、总体归纳,深入反思
归纳是对学习内容的梳理与概括;反思是完成以上三个环节后,回过头再进行思考,再对所学知识进行回顾与整合。此环节我们可首先帮助学生梳理知识,弄清楚知识的来龙去脉,以及各知识点之间的相互联系,使他们所学知识融为一体,然后放开手让学生在以后学习中学会自己归纳、回顾与反思,要让学生“在归纳中学习,在学习中归纳”。这样便能使学生养成一个良好的学习习惯,使他们真正成为学习的主人。培养学生良好的归纳反思习惯,应注意以下几个方面去着手。
1.归纳、反思所学知识的形成、发展过程。
教学知识的形成,一般都是有它的基础背景的。通过归纳反思、比较,有助于理解清楚数学知识之间的联系,能够将知识系统化。
2.归纳反思解题思维过程。
①归纳应用到的主要知识;②归纳反思解题思路和方法的探索过程;③回顾解题的关键之所在;④归纳回顾用到的数学思想方法。
3.归纳反思学习过程中的不足与成功经验。
学生在归纳反思中既是整理知识、整理思维的过程,又是总结成败的过程,在这个过程中获得成功的体验和失败的感受,将是学生成长的宝贵财富。所以,学完一个知识点或解题结束后,我们一定要让学生回过头来检查学习过程,反思自己的不足和错误,寻找原因,采取弥补措施。假若解答过程是在教师和同学们的帮助下完成的,那么反思自己未能完成的原因,和别人的差距在哪里?在思维指向上有哪些差距?从而获得改进信息,调整思维方法。若解题过程很顺利,也要归纳成功的经验,也要从各个角度去反思一下成功的关键是什么。总之,在初中新课程改革中实施数学课堂有效教学,教师要转变观念,认真组织教学内容,充分体现数学本身的特点和价值,把握新方法,适应新课程,把握新课程,只有这样,才能与新课程同行,为学生的终身发展奠定基础。
作者:韩清茹 单位:河北省鹿泉经济开发区中学