1.闭环PLM系统实现
为了实现上述基于MRO的重型机床装备闭环PLM系统,提出了如图2所示的面向重型机床装备的闭环PLM系统构架,包括基础资源层、数据集成层、平台功能层和产品应用层。基础资源层。系统构架的最底层,由数据采集设备、网络设备和集成开发环境组成。采集机床运行状态数据和环境数据,并进行数据传输和数据交换。数据集成层。提供数据和知识支持。运用数据处理技术,实现数据集成,并采用知识获取、知识识别等技术,提取机床的各阶段知识并与专家系统有效地整合在一起,形成覆盖机床全生命周期的知识体系。平台功能层。将知识数据功能化,提供各项服务功能,包括机床状态监控、运行环境监控、机床知识服务、机床设计反馈、远程故障诊断、维修维护计划、维修执行监控、机床操作指导和加工工艺制定等。产品应用层。将闭环PLM系统付诸实践的过程,结合机床共性和不同机床的特性,构建不同机床系列的闭环PLM体系,实现机床全生命周期的数据管理以及数据反馈,提高运行质量和运行稳定性,实现优化设计。
2.关键技术分析
2.1系统开发基础技术
系统开发的基础技术包括数据接入与感知技术、数据融合与处理技术、产品全生命周期数据管理技术和知识服务技术。获取重型机床生命周期各阶段的复杂、动态以及分散的数据;根据数据特性,分析处理后实现统一管理;结合云计算和云制造的思想,整合机床业分布的知识资源,将整合后的知识资源发布出去,提供知识服务。
2.2系统开发专项技术
1.运行智能闭环关键技术应用传感器和ECU模块,感知机床所处环境状态和运行状态,通过自检测技术、自调整与自适应技术,实现运行闭环功能。重型机床ECU自监测技术。针对实时故障诊断难、安全预警需求强、突发状况处理及时性要求高等特点,运用嵌入式ECU系统,实时获取机床加工状态,鉴别机床当前工作状态,对非安全状态提出预警;对处于突发异常状态的机床采取自处理措施,智能控制机床的启停状态,切换机床的工作模式。重型机床ECU自调整与自适应技术。重型机床的加工性能受到工作环境、工作状态及加工对象的影响较大,通过分析机床所处环境信息、运行信息、关键零部件寿命信息,形成基于设备ECU智能控制系统,根据环境情况调整机床参数。2.维护智能闭环关键技术基于知识的健康状态分析与故障诊断技术。提取设备状态特征,确定状态评价标准,评价设备当前状态及健康度,预测其变化和发展趋势。及时正确地对异常状态或故障状态做出预警,诊断出引起状态变化的本质原因,定位故障位置和失效模型,并提出合理的维修方案。基于知识的MRO管理体系与技术。将MRO各管理模块结合起来,形成管理框架,调用诊断知识数据,为MRO决策提供数据支持;同时,决策产生的维修数据也可以反馈到知识库,使知识不断丰富。主要包括MRO需求管理模块、MRO过程管理模块、过程优化模块、服务评价模块和备品备件管理模块。3.基于MRO反馈的设计闭环关键技术从产品设计和工程设计两个方面对重型机床进行优化设计,提高设计可靠性,同时提高重型复杂机床的无故障运行时间,延长使用寿命。基于故障数据反馈的d-FMEA产品设计技术,通过对故障数据的分析,确定产品故障的类型:由设计缺陷导致的故障、由产品寿命导致的故障、由顾客误用所导致的故障,根据不同的故障类型,采取相应的措施,进行设计改进,避免故障再次发生。基于运行数据反馈的工程设计技术,针对运行环境和机床加工对象的差异性,进行辅助工艺编制和产品加工,提供关键工艺的工程设计服务,保证设备的最佳运行状态。
3.结束语
随着重型机床设备业的不断发展,用户对于机床的定制化、个性化需求越来越强烈,同时对于机床大数据管理、维护维修要求也越来越高,基于MRO的闭环PLM系统能够实现产品大数据管理,运行状态监控,提供维护服务,反馈产品设计,将越来越受企业的青睐。本文在深入分析重型机床的行业大数据管理、智能设计和运行维护需求,行业发展趋势的基础上,提出基于MRO的重型机床装备闭环PLM系统;描述了闭环PLM理论模型和系统架构;然后详细阐述了实施闭环PLM系统的基础技术和专项技术。为重型机床生命周期管理提供新的方向,同时也为闭环PLM系统的开发实践提供了详细的理论基础和技术支持。
作者:郑庆 仝克宁 赵楠 邵宏宇 单位:天津大学 天津大学装备设计与制造技术天津市重点实验室 天津大学机构理论与装备设计教育部重点实验室