[摘要]大学数学与中学数学间的有效衔接主要体现在检查模式、教学内容与方法上,衔接工作能够保障数学教学的实效性。为此,对中学新课标背景下大学概率统计与中学数学的衔接问题进行了深入的分析,并对比了大学数学与中学数学中概率统计部分的教学任务,从而提出相应的大学概率统计可行性教学方案,以保证大学概率统计数学的教学工作得以顺利开展。
[关键词]概率统计;中学数学;教学内容;衔接
[中图分类号]G42[文献标志码]A[文章编号]2096-0603(2015)24-0038-01
教育部于2003年出台了《普通高中数学课程标准》,从课程理念、内容与框架角度出发,新标准相对于传统教学标准发生的变化较大。而相对于中学数学而言,大学数学的改革较为滞后,尤其是在中学与高校的改革过程均属独立,因此,大学数学与中学数学必然在教学内容等方面出现严重的脱轨或重复现象。在这种情况下,高校势必要做好大学数学与中学数学的衔接工作。
一、概率内容的衔接
(一)高中概率教学内容分析
高中新课标概率教学部分主要包括五部分构成:随机变量的数字特征、概率应用、集合概型与古典概型、随机事件与概率、条件概率与事件的独立性。针对于高中概率部分,新课标提出的教学任务有:实际教学中,学生要充分了解随机事件发生频率的稳定性和不确定性,并掌握概率的意义,同时能够区分概率及频率的本质。
(二)大学概率教学内容分析
大学概率教学部分主要包括以下几部分构成:随机变量及其分布、概率论基本概念、中心极限定理、随机变量的数字特征、多维随机变量及其分布、大数定律。针对于大学概率部分,提出的教学任务有:学生要对样本空间及随机试验进行深入的了解,并掌握随机事件的运算和概念,能够清晰地对概率和频率的公理化概念以及统计概念有所了解,认识到概率的基本性质。
二、统计内容的衔接
(一)高中统计教学内容分析
高中新课标统计教学部分主要包括四部分构成:变量的相关性、随机抽样、统计案例、用样本估计总体。针对高中统计部分,新课标提出的教学任务有:学生要具备从其他学科或实际生活中抽象出具有统计价值的相关问题能力,并能够对具体的实际问题情境进行有效结合,随即了解了抽样学习的重要意义以及必要意义。在统计问题的解决中,学生要掌握从总体中抽取样本的简单随机抽样方法。
(二)大学统计教学内容分析
大学统计教学部分主要包括六部分构成:参数估计、回归分析、样本、抽样分布、方差分析、假设检验。针对于大学统计部分,提出的教学任务有:大学生要掌握样本、总体、统计量与个体的概念,并对两重点估计的定义以及区间估计的定义进行深入理解。与此同时,大学生还要具备计算单个总体的方差的置信区间与均值,能够解出两个总体的方差比的置信区间与均值差。并对假设检验的基本思想进行深入了解,掌握单个正态总体的均值的假设检验。
三、大学概率统计教学与中学数学教学内容衔接的注意事项
(一)概率部分
通过上文的大学与中学概率教学任务来看,有许多重复的内容,部分中学概率教学任务要求相对较低,主要体现在概率概念中仅对概率的概念以及区别概率与频率提出了要求,不要求较为严密的概率的公理化定义。从数字特征角度出发,只对取值有限的离散型随机变量的方差与均值的计算与理解提出了要求。大学与高中概率内容讲解最大的区别体现在全概率公式、对偶率、贝叶斯公式以及差事件上。由此可见,在概率教学中的概率论基本概念部分,大学教学主要是对重复的内容进行复习。例如,中学古典概型问题讲解也很细致,题目的难度系数也能满足教学要求,那么大学概率教学在这部分就没必要花费过多的时间。针对几何概型问题,学生在高中阶段普遍掌握得较好,为此,大学教师仅需要列举几个相关的教学实例即可。另外,大学概率教学阶段涉及数学期望、有限个离散型随机变量的分布律可以简单讲授。但相对其上述两项内容而言,高中阶段方差的练习还是较少的,那么,大学任课教师就要正常讲解有关方差的内容。
(二)统计部分
中学统计教学任务倾向于实践应用,不要求统计理论的掌握,对大学统计部门的教学体系建立基本不产生影响。在这种情况下,高中介绍数理统计基本概念相对于大学而言,系统性和详细性较为逊色,因此,大学统计教学的执行应该基本以原大纲为导向。综上所述,针对大学概率统计教学,任课教师要采取最佳教学策略,避免出现教学内容重复的现象,并以学生的实际统计概率掌握情况出发,不断探索大学概率统计教学与中学数学教学内容相衔接的方法,精心设计教学流程,促进大学概率统计教学水平的提升。
参考文献:
[1]王亮.中学数学中概率统计教学问题研究[D].辽宁师范大学,2012.
[2]张馨心.高中数学概率统计的教学设计研究[D].辽宁师范大学,2011.
作者:郭占海 单位:河套学院