当今的农业生产只有坚持走数字农业的道路,才能把生态、社会和经济等方面的综合效益达到最高,也才能够使农业实现可持续发展。目前,最新视频监控系统主要用到的微处理器有ARM、FPG、SOPC等,大多数采用ARM作为主控芯片。Linux操作系统内核能够进行灵活的裁剪,工作的效率高、稳定性好,在移植方面的性能也非常强大;并且Linux的源代码是开源的,TCP/IP网络协议栈也十分完整;同时,蓝牙、红外线、局域网(WLAN)、GPRS、3G、ZigBee等无线技术的飞速发展,为减少铺设电缆等投入、降低成本创造了条件。
1、设计原理及内容
1.1设计原理
为实现嵌入式田间图像视频采集,主控芯片选择使用比较广泛的S3C2440芯片,摄像头采用芯片为中星微ZC301的USB摄像头,把采集到的植物视频信息传输到主控芯片中。主控芯片包括把采集的视频信息显示到LED触摸屏上,还要把采集到的信息传输到PC机中。大田视频采集模块总体结构如图1所示。图1大田视频采集模块总体结构图软件方面包括USB摄像头的驱动程序、视频采集程序、LED实时显示程序网络传输程序的设计、调试、烧写等操作。
1.2主要研究的内容
1)对ARM嵌入式Linux的内核,Bootloader、YAFFS根文件系统的制作和移植,即完成软件平台的搭建;2)中星微ZC301的USB摄像头驱动程序的设计;3)模块的视频采集程序的设计;4)设计驱动LED,来显示采集到视频信息的程序;5)设计TCP网络传输程序,把视频信息发送出去;6)把采集到的视频图像显示到PC虚拟机上。
2、总体设计
2.1平台设计
2.1.1 BootLoader制作和移植首先按下任意键,使ARM9的程序运行停止在如图2所示的在DNW软件上出现主选择菜单界面;接着选择下载到flash,即选择‘1’,使用USB下载;在DNW软件上出现有关闪存的各个存储区间的情况。在上一步完成的基础上,再选择FLb.bin要烧写到NAND闪存中的位置,即选择‘0’,烧写到NAND闪存中的boot的位置;然后在DNW软件界面下执行配置选项中的操作执行指令,来进行下载地址、COM口和波特率设置;在DNW软件上点击USBPort选项中的传输操作,找到要烧写FLb.bin的位置,选中FLb.bin文件;文件传输完成后即完成了BootLoader的移植。
2.1.2 系统内核剪裁、制作和移植Linux内核的移植和引导加载程序的烧写过程几乎是相同的,添加内核的映像文件和BootLoader的移植都是相同的。也就是说,内核是下载到NAND闪存的kernel位置;内核移植时会出现移植进度条;移植完成后出现的和BootLoader的移植出现的提示一样。到此,Linux内核的移植就完成了。Linux内核配置对话框如图3所示。
2.1.3 FAFFS根文件系统的创建和烧写过程1)使用目录创造命令创造根文件系统的目录,并创建在usr目录下的bin、dev、etc等目录,把根文件系统的框架搭建起来;2)创造根文件系统的设备文件,进入到dev目录下使用创造命令来完成;3)安装etc,进入到etc目录下进行解压etc.tar.gz;4)进入到内核目录下使用模块编译命令来编制内核模块;5)使用模块安装命令对模块进行安装;6)使用配置命令对其进行配置,编译命令进行编译,安装命令进行安装;7)进入到根文件目录下使用ln-s命令来进行链接,重新再编译内核;8)将编译生成的内核映像文件通过USB传输到开发板的根文件系统中。
2.2软件设计
2.2.1 摄像头驱动程序设计
实现USB设备的即插即用功能的函数是摄像头探测函数,函数名称是sp_probe。该驱动程序中的数据传输模块使用takelet来实现对数据的同步快速传递,此函数对图像数据进行解码使用的是spcode.c程序。数据传输模块函数的具体名称是sp5_init_isoc,并且在sp5_open函数中挂有该函数的入口点。打开设备是同步传输数据开始的标志,这里实现数据传输的函数是sp_m_data,它把数据传送给驱动程序,驱动程序对数据的访问使用的是轮询法。Linux中的USB器件通过系统的USB层来操作下层硬件,流程图如图4所示。
2.2.2 模块视频采集程序
本系统的视频采集程序是基于V4L开发的,主要实现图像采集设备的初始化、读取和关闭等,基本操作流程如图5所示。
3、大田视频采集模块的安装与调试
3.1大田视频采集模块安装执行该命令要在该软件文件所在的目录下,将视频采集模块和PC虚拟机连接起来。这样在PC虚拟机上就会显示出视频图像,如图6所示。
3.2大田视频采集模块现场调试在齐齐哈尔嫩江大桥以北的农田里,对种植的土豆进行试验。模块调试如图7所示。图7模块调试一触摸屏LED和虚拟机显示图像不清晰,是因为帧的大小等参数设置得小,修改后图像较原来清晰些;触屏和虚拟机图像显示不连贯是因为其显示程序中延时设置太大,以及内核需要优化小点。大田视频采集模块的对农作物视频采集稳定,触屏的视频图像显示非常清晰,且以非常高的质量把采集到的视频图像传输到了PC机上(见图8),在其上显示的视频图像清晰连贯,能对农作物进行非常有效的实时监测;操作人员能够从其中迅速获得农作物的自身生长发育情况和是否有病虫害等信息,而且大田的农作物视频信息采集受阳光的影响也很小。本次试验非常成功。图8PC机显示的视频图像
4、结论
本文将嵌入式技术和USB摄像头组合在一起,用于农业的生产视频监控中。本着成本低、体型小、功率消耗小和实用的目的,采用USB摄像头和嵌入式系统来构建大田视频采集模块。实验结果证明,系统采集、上传及显示效果良好,达到了提高农作物产量、降低成本的目的。
作者:何鹏 弭海滨 杨曼 罗运友 单位:齐齐哈尔大学 通信与电子工程学院
相关专题:工程地球物理学报 河北农业大学渤海校区