摘要:在目前的高等数学教学中,数学建模的应用还不是很广泛,需要在教学中融入数学建模思想。本文对当前高等数学教学中存在的一些问题进行了分析,提出了要在高等数学的教学中融入数学建模思想,并对数学建模在高等数学中的应用进行了分析。
关键词:数学建模思想;高等数学;教学法
数学建模是将实际问题通过数学模型的方式展现出来,并通过计算结果将实际问题解释清楚的一种教学方法。采用数学建模的方法,能够将许多复杂的数学问题简单化,尤其是在高等数学的教学中,诸如数学公式定理中的极限、微积分等问题,常常需要运用到数学建模的方法,才能够有效解决其中的一些复杂的数学问题。因此,在高等数学教学中,需要注重数学建模思想的融入,提高解决数学问题的效率。
一、高等数学教学中存在的问题分析
(一)教学观念落后数学是一门逻辑性很强的学科,在解题时一环扣一环,一个环节出错,后面就会跟着错。所以,在高等数学的教学中,教师比较注重培养学生的逻辑性思维,训练学生的计算能力,从而忽视了课堂气氛、学生学习兴趣、课堂开篇导入等问题。比如,在学习导数时,教师通常是直接将导数的定义提出来,没有任何的问题导入,这让学生感到十分迷茫。在概念讲述完毕后,学生会觉得这个知识点太过抽象,无法解决实际问题。另一方面,高等数学的许多知识本身比较复杂,加上教学方式比较枯燥,学生无法提起学习的兴趣,最后导致学生步入社会后也无法运用所学知识去解决实际的数学问题。(二)教学内容落后每所高等院校的大部分专业都设有高等数学这门基础课程,教学中所使用的教材通常是使用已久的老教材,其内容没有及时的更新,也不太注重对知识的应用。比如,高等数学中的极限,其解题方法大概有16种包括洛换元法、泰勒公式、等比等差数列公式的应用等等。而每一种方法都需要花费一定的时间来讲解和学习,同时还需要学生在课后加强练习,这给学生带来了很大的思想负担和学习压力。但是,这些方法在解决实际问题时用处并不大,如果将MATLAB等数学软件应用到教学中来,就可以通过数学建模的形式,让学生在计算机上动手操作,从而提升学生解决实际问题的能力。(三)教学方法落后数学不同于其他学科,在教学时教师需要一边讲解一边分步骤分析、演算,而这个过程中使用到的工具基本就是粉笔和黑板。这样的教学方式往往会使学生习惯于听,而不会主动去思考,也无法将学生的精力集中起来。并且,课堂上少了师生间的互动,学生很难得到锻炼。而按照概念——定理——例题的讲授形式,学生的思维也会被局限,从而抑制了其创新能力的发展。如果能够在课堂上加入一些新颖的教学工具和方法,如多媒体、数学软件、数学建模等,课堂氛围将得到很大程度的改善。多媒体教学能够激发学生的学习兴趣,数学软件能够吸引学生的注意力,而数学建模不仅能够发动学生积极、主动思考的精神,还能够提升学生分析问题和解决问题的能力。
二、融入数学建模思想的高等数学教学法
(一)在应用性例题中使用数学建模的方法以数学建模解决函数问题为例,东北地区冬天温度能够低于零下20℃,为了保暖,窗户需要选用双层玻璃,要求研究双层玻璃的功效。首先,我们建立数学模型,在模型建立前需要对一些条件进行假设:第一是要假设不存在室内外的空气对流;第二要假设两个温度,室内温度T1和室外温度T2,并且这两个值均为常数;最后需要假设玻璃的热传导系数K1也为常数。在满足这些条件的情况下,建立数学模型如下:设空气的热传导系数为K2,热量为Q,而Q表示单位时间通过单位面积由温度高的一侧流向温度低的一侧的热量,需要运用到热传导的公式Q=K△Tld,其中l和d表示距离。而在实际生活中,双层玻璃的应用除了要考虑其保暖功效外,还要考虑房屋建筑的美观,所以h的值应该适当的小一些。比如,假设h=2,则l=2d,带入到公式中可得,房屋热量的损失很小,跟单层玻璃比起来,其损失值还不到单层玻璃热量损失的3%。由此可见,双层玻璃窗户的保暖功效比单层玻璃窗户要好得多,所以在寒冷的北方基本采用双层玻璃窗户。(二)通过数学软件来进行数学建模对于一些抽象的知识点,学生的吸收能力往往不太理想,在利用该知识点解决实际问题时,学生会感觉手足无措。这时,如果能利用计算机和数学软件来建立数学模型,那学习就要轻松得多。并且,利用数学软件的方式来教学,可以提高学生的动手能力,帮助学生在实际操作中对所学知识有更加深刻的认识。比如,Mathematica是常用的数学软件,它不仅可以对各种数据进行处理,还能进行编程和作图,利用这款软件来建立数学模型十分有用。(三)结合多媒体技术来辅助数学建模多媒体能够帮助教师更加轻松的教学,帮助学生更好的理解数学模型。因为多媒体能够形象、生动、直观的将数学模型展现出来,学生的注意力能够集中在多媒体屏幕上,因而能够激发学生的学习兴趣,促使学生在学习中积极的去思考。并且,通过多媒体的演示,还能够为课堂提供创设情境,将学生引入到建模问题中来,为解决建模问题而开动脑筋、发散思维。比如,在舰艇的汇合问题中,需要确定护卫舰在搜寻到飞行员后,如何航行才能与母舰回合,这个问题就可以利用多媒体来进行辅助教学。首先,通过多媒体屏幕将需要解决的问题呈现出来,然后将问题提取出来,建立一个实物模型,再将实物模型转化为数学模型,建立一个坐标轴,求这个坐标中的一个点D。护卫舰与母舰汇合的地方就可以看成一个点,而这个点就是D。并且,问题是护卫舰如何才能与母舰汇合,因此,在这其中还涉及到角度的问题。那么,多媒体技术在这时候就能派上用场了,它可以将通常用到的平面图转换成更加的立体图,将模型分解开来,方便教师在上课中对每个部分做详细的讲解,学生也能更直观的理解题意和模型。只要找出坐标和角度,就能确定护卫舰的航行方向,也就知道了它的航行路线,汇合问题也就迎刃而解了。(四)鼓励学生参加数学建模竞赛数学建模竞赛是最能体现学生的数学综合能力的比赛,它不仅能够培养学生的创新意识,还考查了学生利用数学建模方法和计算机技术解决实际问题的能力。所以,教师应该多鼓励学生参加数学建模竞赛,在竞赛的准备过程中,学生需要大量的利用数学建模来解决数学问题,这样能够帮助提升学生的数学综合能力。数学建模竞赛内容就包括了模型的准备、建立、求解、分析和检验等要求。
三、结语
综上所述,数学建模在高等数学中的应用有重要的价值,它不仅能够帮助解决一些复杂的数学问题,还能通过数学建模竞赛、多媒体技术、数学软件等来提升学生的数学综合能力。因此,将数学建模思想融入到高等数学教学中来,对高校的数学教育有着重要的意义。
参考文献:
[1]何正风.浅析融入数学建模思想的高等数学教学[J].数学学习与研究,2015(11).
[2]李薇.在高等数学教学中融入数学建模思想的探索与实践[J].山西煤炭管理干部学院学报,2012(4).
[3]何俊杰,王娟酒店管理论文.高等数国际管理论文学教学中融入数学建模思想的研究[J].当代教育理论与实践,2013(12).
作者:曲国锋 单位:山西省运城师范高等专科学校