1实验结果及分析
金刚石可切削性指标主要选择刀具磨损和工件表面质量。由图5和图6可以看出,深层渗氮纯铁的金刚石可切削性较好,其中渗氮纯铁试样的表面粗糙度值在6nm以下,刀具磨损主要以微崩刃为主,崩刃长度约35μm,原因可能是主轴转速较高而且ε-Fe2-3N相脆性较强,切削时易引起高速冲击,可以通过控制工艺参数使刀具磨损进一步减小。传统认为金属材料可被加工出镜面质量与其中某些重要微量元素及其分布有关。此次纯铁渗氮层成分主要为Fe2-3N,几乎无其他元素,说明Fe2-3N物质本身具有被金刚石加工出镜面质量的潜质。由此得到一个启示:氮化铁材料适合金刚石超精密切削。表面改性的实质是在被加工件表面制造了一种新材料,然后对此化合物层进行切削。如果有针对性地将表面改性方法中几个缺陷加以克服,直接制备出整体单相可控、杂质很少的氮化铁(或加入微量有益于减少刀具磨损和提高表面质量的合金元素)工件材料,将非常有可能解决黑色金属的金刚石超精密切削问题。
2氮化铁粉末冶金钢的金刚石可切削性实验研究
2.1氮化铁粉末冶金钢的制备
氮化铁材料的制备研究可以追溯到20世纪50年代初,Jack最早确定了Fe-N相图,并从结构上分析和确定了相、相、相和相及其他氮化铁。这些氮化铁在强度、硬度和韧性等方面有着各自不同的特点。由于氮化技术在表面强化方面具有明显的优势,所以被广泛用于动力机器制造工业。近年来,由于氮化铁具有优异的软磁性能和良好的耐腐蚀和抗氧化性,被应用在了制作磁记录介质、磁感元件和吸波材料等方面,受到了广泛的关注[9]。国内东北大学佟伟平教授[10,11]]以及西南交通大学杨川教授的课题组[12,13]等在单相氮化铁纳米粉体制备以及铁氮粉末冶金方面做了大量研究。粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工艺技术[14],已成为新材料科学和技术中最具有发展活力的领域之一[15],而铁基粉末冶金材料是最重要的粉末冶金材料之一。西南交通大学杨川教授的课题组采用将一般纯铁粉进行模压成形方式加工成生坯,在烧结过程中进行渗氮处理的方法制备铁氮粉末冶金零件取得了一定效果,其烧结后的主要成分由Fe和Fe4N两相组成(部分原因是烧结温度高,导致脱氮),孔隙度为8.73~11.14,密度为6.2035~6.591g/cm3,硬度为128.3~307.1HV。本研究采用此材料进行初步切削实验。
2.2切削实验结果及讨论
实验条件及实验装置同图4,金刚石切削氮化铁粉末冶金钢所产生的刀具磨损和工件表面质量分别如图7、图8所示。金刚石刀具在直接切削相同面积的模具钢时,VB值达16μm,而金刚石刀具切削氮化铁粉末冶金钢后的VB值仅为1.16μm。与直接切削模具钢相比后刀面磨损明显减小。工件端面靠近圆心处的表面粗糙度为64.34nm(实验最大切削距离处)。在靠近端面外侧附近还观察到了如图9所示的孔隙。尽管氮化铁粉末冶金钢的各项指标(孔隙度、密度、硬度以及成分等)与光学级模具型芯材料的要求还有一定距离,但此结果已经说明了氮化铁材料的金刚石可切削性较好。还需要进一步提高各项指标以达到模具钢的性能要求,以及严格控制其成分,如果能进一步控制氮化铁为某一单相,从而还可以验证是哪种相对减少金刚石刀具磨损起着关键作用,进而可以揭示工件表面改性方法的内在机理。
3结论
金刚石切削黑色金属时产生严重磨损是制造领域难题,在众多解决方法中表面改性方法取得了较好效果,但此方法仍然存有潜在问题。本文对工件表面改性方法进行了深入研究并探索了新的金刚石可切削材料。研究了纯铁渗氮工艺并对渗氮后的纯铁进行了金刚石可切削性实验,结果表明:(1)以Fe2-3N为主要成分的化合物层具有被单晶金刚石加工出镜面质量的潜质(Ra<10nm);(2)在此研究基础上,提出了整体单相可控氮化铁粉末冶金钢这一新型模具材料,初步切削实验已经证明了其具有较好的金刚石可切削性,后刀面磨损VB值仅为1.16μm。进一步深入研究有望揭示表面改性方法减少金刚石刀具磨损的机理。
作者:李占杰 宫虎 佟伟平 房丰洲 杨川 单位:天津大学精仪学院 天津市微纳制造技术工程中心 天津大学机械工程学院