期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 经济论文 >

双向光无线通信系统设计综述

摘要:研究设计了新型基于球形逆向调制结构,这个结构采用球形反射实现较宽的方向角度反射,并使用全光学光束相互作用实现超快时标的调制。改进被动光学无线通信链路的双向收发器的设计从理论角度出发研究了球形逆向调制器,并使用三种玻璃制作了实验用球形逆向调制器。实验结果显示能够提供最佳的折射和非线性,从而实现理想的反射和调制性能。

关键词:光无线通信;全光技术;球形逆向调制器;非线性

中图分类号:TN929.11 文献标识码:A 文章编号:1005-488X(2015)04-0268-04

引言

无线光通信(OWC)正成为一项越来越受人关注的技术,因为它融合了光通信的高信息速率与无线移动通信的优点[1]。早期的无线光通信系统是以室内和室外系统出现的,现在人们正在努力攻克这些新光通信网络的技术挑战[2]。新兴的无线光通信网络与当前的光纤网络有很大的不同,无线光通信收发器通常在广泛分布的收发器之间建立双向链路[3]。双向通信可以通过简单的主动下行链路来实现,在这样的链路中所有的收发器之间通过发散的LED光束或校准的激光光束相互发送已编码的光信号[4]。或者,双向通信也可以通过被动下行链路实现,在这样的链路中,一个固定的光源发出光束,远程的收发器反射并调制入射光束[5],然后将已编码的光信息返回给光源。被动上行链路的双向逆向调制有多个优点,包括更低的能耗、实施的便捷性、移动性,以及对远程收发器布局的非敏感性[8]。但是部署的收发器必须能够高效地将入射光束反射到光源,并调制入射光束[6]。无线光通信收发器的高效逆向调制的首要问题是反射的方向性。最简单的反射器(RR),即角形反射器,可以将入射光束反射到其各自的光源,反射方向立体角最大可以达到π/2球面度,占到整个球体立体角即4π球面度的1/8[7]。角形反射器通常被用作双向无线光通讯收发器,因为其与调制器的整合简单方便,但是,还必须考虑到更大反射角的需求。因此球形反射器的方案被提出来[8]。因为其对称性,球形反射器可以实现在整个球面上的反射,即4π球面角的反射立体角[9]。但是,球形反射器的反射最终取决于折射,所以,必须审慎地确定球体的折射率,从而实现理想的反射水平[10]。无线光通信收发器的高效逆向调制的另一个问题是调制速度。调制的目的是在远程收发器上将光信息编码,然后收发器将光信息返回给光源,多项技术已经被用于此目的[11]。

1基于超快全光技术的双向光无线通信系统原理

本文采用了双向无线光通信收发器的一个新结构。这个结构整合了球形反射和全光学调制,因为球形反射能够实现更大的方向角,而全光学调制能够保证高速率的运行。本文对球形反射和全光学调制的整合方案进行了理论分析,并在三种有着不同折射率和非线性的球形逆向调制器上进行了实验测试。通过图1所示的球形逆向调制器,反射和调制功能被整合进建议的无线光通信收发器中。斜视图见图1(a),横截面图见图1(b)。平行的入射信号束照在球体上。信号束在入口处聚集,在后部反射,并在入口处再次成为平行信号束,然后返回光源。同时,无线光通信收发器生成一个本地控制光束,这个光束照在球体的后部,它对反射的入射信号束进行调制。球体后部非线性信号束的相互作用可以实现本地光信息在反射信号束上的编码,然后编码后的信号束返回其光源。整个反射调制过程的效果取决于球形反射调制器的材料特征。针对反射和调制,有必要确定合适的折射率n以及非线性系数n2。本文研究了不同类型的球体,并对三种玻璃进行了测试:N-BK7被用作基准玻璃,因为它表现出较低的折射率(n=1.51)和较低的非线性(n2=3.2×10-16cm2/W);对N-LASF9进行了测试,它表现出中度的折射(n=1.85)和中度的非线性(n2=1.7×10-15cm2/W);还对S-LAH79进行了测试,它表现出较高的折射(n=2.00)和较高的非线性(n2=2.8×10-15cm2/W)。这里的n2值是根据Boling-Glass-Owy-oung(GBO)模型[12]计算的。所有三种玻璃都有很高的透明度,且在可见和高达2000nm波长的近红外光谱中有比较稳定的折射,因此能够实现室内链路或室外链路。波长为1550nm的入射信号束沿着光轴(OA)照在球体上,照射方位角为,相对于xyz坐标系的极角为θ。波长为780nm的本地控制束照在整个球体后部。光束的分离通过系统中的一个1550nm的带通二色向滤光片实现,滤光片穿过1550nm的信号束并拦截780nm的本地控制束。在x-y平面放置了一个孔径以拦截杂散光。所有被测试的球体的半径为a=2.5mm。对长度为z=L=3.00m范围内的反射光束进行了反射强度测量。

2基于超快全光技术的双向光无线通信系统设计

针对反射调制,为了确定理想的反射水平,有必要研究球体的折射特征并定义出最优的折射率[13]。本文使用了射线跟踪模型以研究折射的特征。在这个模型中,均一强度的入射信号束照在球体上。在两个关键点测量了信号束强度,以取得球体折射率n的不同值。在近似n=2.00的折射率下,在球体的后部形成一个很强的焦点。这样的聚焦使得反射信号束变成平行信号束后返回光源,而这能提高反射性能;另外,这样的聚焦可以增强非线性信号控制束的相互作用,而这能提高调制性能。这样的观察结果与球形反射器中折射的理论近似研究结果是一致的,这说明n=2.00的球体可以将靠近光轴的近轴光线聚焦到光轴的交叉点和球体的后部[14]。这样的观察结果也与对球体的严格电磁模拟结果一致,这个球体模型基于Mie理论[15]创建,模拟结果显示出n=2.00的模拟球体在光轴交叉点和球体后部形成一个高强度的焦点。信号束在长度L的范围内传播,然后反射到光源。标准化的反射信号束强度为Is和n,对于S-LAH79玻璃(n=2.00)球体而言,它能够实现有效的反射,其反射信号强度比N-LASF9玻璃(n=1.85)球体的大9×105倍,比N-BK7玻璃(n=1.51)球体的大4×106倍。这样的结论与球体实验测试结果整体上一致。实验测试结果显示S-LAH79玻璃(n=2.00)球体的反射信号强度比N-LASF9玻璃(n=1.85)球体的大7×105倍,而N-BK7玻璃(n=1.51)球体的反射信号强度更低,比测试系统的最低噪声还要低。对S-LAH79玻璃(n=2.00)球体的进一步实验测试显示其反射光束与主要来自被照射球体近轴区域的反射光束有0.02°的发散角,近轴区域占球体中央截面积的3%。因为球面像差,球体近轴区域之外的部分入射光束丢失,而这会导致信号衰减(即信号减弱)。为了确定球形逆向调制器全光学运行的特征,本文进行了一系列的随时间变化的脉冲激励研究。实验示意图如图2所示(未严格按比例)。时长为100fs,波长为780nm的本地控制脉冲波激活球形逆向调制器的后部,强度在0.52至2.10GW/cm2之间。时长为100fs,波长为1550nm的入射信号脉冲波照射球体的入口处,完成后续的反射和调制。在随时间变化的试验中,本地控制脉冲波被一个电动平台延迟,随着时延变化的反射信号功率被相敏检波系统记录下来。请注意,反射束的传播长度取决于上面所述的0.02°光束发散角以及检波仪的尺寸。

3系统测试与分析

脉冲光波激励测试的结果如图3所示。测试的方式是测量三种玻璃N-BK7(n=1.51)、N-LASF9(n=1.85)和S-LAH79(n=2.00)球形逆向调制器(从下到上)的反射信号强度Is(t),它随着时间t而变化。这些反射信号强度都参照S-LAH79(n=2.00)球形逆向调制器的信号进行了标准化处理。很显然本地控制束可以在超短时标内有效地调制信号束。反射信号强度的特征脉冲波为大约120fs的半峰全宽(FWHM)波[16]。图3的逆向调制信号时域特征反映了全光学调制的机制。所有三种信号相对于时间零点都是对称的,每个信号都有与控制和信号脉冲时间相当的半峰全宽(FWHM)。因此,本地控制脉冲和信号脉冲之间的非线性被认为在性质上为非共振,其原因是玻璃的非线性电子极化而不是共振电荷载体的光子生成和重组。在施加本地控制束之后,反射信号强度增加。这种正极性说明正非线性系数使得本地控制束在球体后部表面的折射率有一个瞬时的增加,这导致反射信号强度的提升。对于780nm控制束和1550nm信号束,按照Kramers-Kronig关系,图中的微小负旁瓣被认为导致了控制束引起的整个球体内信号束吸收量的增加。对反射信号功率ΔPs的调制如图4所示,对于N-BK7(n=1.51)、N-LASF9(n=1.85)和S-LAH79(n=2.00)球形逆向调制器,随着(峰值)本地控制束强度而变化。线性趋势在图中表现得很明显,而斜率被用来计算材料的非线性系数。对于N-BK7(n=1.51)球形调制器,其信号水平特别低,只在本地控制束最高强度2.1GM/cm2的时候才能明显看到,其估算非线性系数为n2=(3±1)×10-16cm2/W。这个值基本上符合之前研究中的实验值3.5×10-16cm2/W,这也与BGO模型计算值3.2×10-16cm2/W处在相同的数量级。对于N-LASF9(n=1.85)球形逆向调制器,非线性系数n2=(1.3±0.1)×10-15cm2/W。这个值与之前研究的实验值9.6×10-16cm2/W相当,与BGO模型的计算值1.7×10-15cm2/W在相同的数量级。对于S-LAH79(n=2.00)球形逆向调制器,非线性系数n2=(1.8±0.1)×10-15cm2/W。值得注意的是,从图中的球形逆向调制器线性趋势可以看出:如果有必要,可以进一步增加本地控制束强度以获得反射信号功率的更大调制深度,因为在施加的本地控制束强度水平中没有发现更大的非线性和/或信号破坏。总的来说,S-LAH79(n=2.00)球形逆向调制器最适合用作无线光通信收发器,因为它能同时提供有效的反射和调制性能。本文的实验研究显示了严格意义的全光学转换而不是随机输入波形数字调制的脉冲反应特征,而测得的脉冲反应的近乎实时特性证明这样的收发器结构可以有效实现GB/s或更快的高速信息调制。

4结束语

本文提出了无线光通信收发器的一个双向运行结构。开发了球形逆向调制器,以实现广方向角(2π球面角)的反射以及在超快时标上(120fs时长)的全光学调制。采用三种玻璃N-BK7、N-LASF9和S-LAH79设计了球形逆向调制器。实验结果显示S-LAH79结构能够为反射和调制提供最佳的折射和非线性。这样的球形逆向调制器对于未来无线光通信系统的全光学运行来说将是重要的单元。通过对已有的提取光载波方式所组成的无线光双向通信系统的性能进行比较,结果表明本系统结构具有提取光载波功率较大、传输性能较优,适合更长距离传输的优点。

参考文献

[1]邓聪.浅析无线光通信传输与接入[J].中国新通信,2015,17(3):20.

[2]李晓靖.基于WiFi技术的井下无线通信系统设计[J].通讯世界,2015,32(1):19.

[3]韩一石,张厉,陈伟涛.基于综合光学调制技术的光纤无线双向通信系统设计[J].光子学报,2011,40(3):401-406.

[4]周小波.基于ZigBee与CAN总线技术的井下无线通信系统设计[J].现代电子技术,2011,34(10):118-119.

[5]展爱云,张跃进,梅艳.基于multi-Gbps的室内FS多播短距离无线光通信系统[J].制造业自动化,2015,37(1):36-39.

[6]吴鹏飞,柯熙政,袁泉.一种10Mbit/s—1Gbit/s速率自适应无线光通信机的研制[J].西安理工大学学报,2014,30(4):443-447.

[7]易星,肖沙里,彭光辉,等.基于紫外激光器的无线光通信系统[J].重庆工商大学学报(自然科学版),2014,31(7):46-49,55.

[8]吴晓军,刘敏,李笔锋,等.基于激光雷达观测信息的无线光通信系统性能研究[J].光电子•激光,2014,25(11):2146-2151.

[9]吴健.水下无线光通信系统的研究和实现[D].厦门:厦门大学,2014.

[10]赵康僆.若干无线MIMO通信系统分集实现技术研究[D].南京:南京大学,2014.

[11]杨雨苍.全双工无线通信系统的干扰消除技术研究[D].北京:北京邮电大学,2014.

[12]巩玉先.基于空移键控的室内可见光MIMO无线通信技术的研究[D].南京:南京邮电大学,2014.

[13]曹红红,李华旺,王永,等.微小卫星星内光无线通信系统的设计[J].遥测遥控,2013,34(6):40-44.

[14]宋哲,周雷,吕振彬,等.基于LED的室内光无线通信系统研究与硬件设计[J].中国新通信,2014,16(17):111-112.

[15]丁举鹏.可见光通信室内信道建模及性能优化[D].北京邮电大学,2013.[16]唐朝毅,尹怡辉.轨道交通中光无线通信系统研究[J].光通信技术,2015,39(1):39-41.

作者:胡春芬 周海飞 单位:常州信息职业技术学院


    更多经济论文论文详细信息: 双向光无线通信系统设计综述
    http://www.400qikan.com/mflunwen/jjlw/127942.html

    相关专题:并购中企业价值的计算 徐安妮


    上一篇:化学教学方法与学生能力的培养
    下一篇:分析如何强化毕业生的就业指导

    认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


    品牌介绍