1试验概况
1.1原材料
水泥:呼和浩特市冀东水泥厂生产的P·O42.5级水泥;细骨料:呼和浩特市产河砂;钢渣采用包钢转炉钢渣,本试验选取钢渣均经过热闷工艺,释放其膨胀性,符合混凝土粗骨料相关标准,经破碎筛选,粒径15~25mm。试验对比用天然碎石采用呼和浩特市大青山机制硬质花岗岩碎石,粒径15~25mm。水胶比为0.3、0.4时,使用聚羧酸高效减水剂;水胶比为0.6时,使用萘系减水剂。
1.2试验配合比
混凝土配合比共三种,分别为0.3、0.4、0.6;钢渣代碎石率(体积比)分别0、50、100%。1.3试验内容试验内容分为三类:一是骨料性能测试,具体依照JGJ52—2006《普通混凝土用砂石质量及检验方法标准》;二是混凝土拌合物坍落度及含气量测试,参照GBT50080—2002《普通混凝土拌合物性能试验方法标准》;三是钢渣代碎石混凝土的力学性能测试,参照GBT50081—2002《普通混凝土力学性能测试方法标准》。混凝土强度试件尺寸为100mm×100mm×100mm,采用试验室标准养护,压缩强度试验龄期分别为3、7、28、90d、半年及一年,劈裂抗压强度试验龄期为90d。
2试验结果与分析
2.1骨料性能测试结果
密度、含水率测试结果见表1。钢渣表观密度为3126.67kgm3,含水率为2.17%。碎石表观密度为2843.35kgm3,含水率为1.1%。钢渣表观密度及含水率均大于碎石。表2为钢渣与碎石压碎指标测试结果。有试验结果可知,钢渣压碎指标平均值为4%,碎石压碎指标平均值为7%,钢渣压碎指标小于碎石压碎指标。
2.2混凝土拌合物
混凝土拌合物含气量及坍落度试验结果见表3。当水胶比为0.3时,相同配合比条件下,钢渣代碎石混凝土的坍落度与普通混凝土相近。当水胶比为0.4时,要达到与普通混凝土相同流动性,钢渣代碎石混凝土减水剂用量需增大到普通碎石混凝土的2.3倍。当水胶比为0.6时,钢渣代碎石混凝土单独增加减水剂已无法调配出与普通混凝土相同的流动性,需要同时增加水的用量。观察不同钢渣代碎石率的混凝土含气量,可发现在同等水胶比条件下,钢渣代碎石混凝土含气量比普通混凝土含气量大,且随着钢渣代碎石率的增大,拌合物的含气量逐渐增大。随着水胶比的增大,钢渣混凝土拌合物含气量有进一步增大的趋势。
2.3硬化混凝土力学性能
2.3.1抗压强度
表4显示了混凝土抗压强度试验结果。表5是混凝土各龄期相对强度增长率。图1为混凝土抗压强度随龄期的发展曲线。期龄90d后,普通混凝土抗压强度增长率开始逐渐减小,不足8%;而钢渣代碎石混凝土增长率逐渐增大至15%左右,钢渣代碎石混凝土增长率明显大于普通混凝土。到180d时,同水胶比下钢渣代混凝土已和普通混凝土抗压强度非常接近。180d后,不同钢渣代碎石率混凝土抗压强度增长速率已逐渐趋于稳定,钢渣代碎石混凝土强度增长率仍大于普通混凝土。且同等水胶比下钢渣代碎石率越高,混凝土强度增长越快。
2.3.2劈裂抗拉强度
表6为90d劈裂抗拉试验结果,图2为不同水胶比钢渣代碎石混凝土与普通混凝土90d劈裂抗拉强度变化曲线。由试验结果可知,不同替代率的钢渣代碎石混凝土与普通混凝土的劈裂抗拉强度随水胶比的变化趋势相同的,均随着水胶比的增大,劈裂抗拉强度不断减小。相同条件下,钢渣混凝土与普通混凝土劈裂抗拉强度无明显差异。
3结论
(1)钢渣与碎石在物理性质上存在的差异:钢渣表观密度和含水率比碎石大,压碎指标要小于碎石。(2)在相同配合比条件下,要配出与普通混凝土流动性相同的钢渣代碎石混凝土,需增大水和减水剂的用量;且随着水胶比的增大,所需水和减水剂用量逐渐增大;混凝土拌合物含气量随钢渣代碎石率的增加而增大。(3)与普通碎石混凝土相比,钢渣代碎石混凝土抗压强度早期增长率基本相同,长龄期抗压强度增长率大于普通碎石混凝土。(4)钢渣代碎石混凝土与相同配合比条件普通混凝土的劈裂抗拉强度接近。
作者:石东升 单位:内蒙古工业大学