摘要:针对TC11钛合金电火花加工中放电状态不稳定、加工效率不高的问题,从电极材料和放电参数优选等方面开展试验研究,在此基础上提出了TC11钛合金电火花加工工艺方案,对该材料的高效加工具有一定的借鉴、指导意义。
关键词:TC11钛合金;正交试验;材料去除率
钛合金因其高强度、耐热耐腐蚀等优点,在航空航天及国防工业领域应用广泛[1-2]。但由于钛合金具有导热系数差、高温下易与刀具材料起反应等特点,切削过程中极易出现排屑不畅、粘接磨损、崩刃等现象,属于典型的难切削材料[3]。电火花加工作为加工难切削材料的一种常用手段,加工不受材料硬度及强度影响,在钛合金加工应用领域得到了广泛关注[4]。电极材料及放电参数对电火花加工效果有着决定性的影响。本文针对TC11钛合金电火花加工中放电状态不稳定、加工效率不高等问题,从工艺试验角度探讨电源参数、电极材料等参数对电火花加工的效率、电极损耗等方面的影响规律,在此基础上优选电加工工艺参数,提高加工效率、降低损耗。
1钛合金电火花加工难点分析
钛合金的物理特性决定了其电火花加工的难度:钛合金的导热系数较低,电火花加工过程中产生的热量难以迅速释放,导致加工区域温度迅速升高[5]。钛合金在高温条件下的化学性质比较活泼,可以与许多非金属元素(如碳、氧、氮等)化合,生成诸如TiC等非常难溶的化合物[6],影响加工过程。在加工过程中,电参数、电极材料以及排屑状况等工艺条件均会对放电过程产生较大影响。如果匹配不当,势必会导致放电条件持续恶劣,甚至导致拉弧、短路等不稳定放电现象,影响加工效率与质量。
2电极材料选择
工艺参数优选前应先确定电极材料,目前钛合金电火花加工中常用的电极材料为紫铜与石墨[7-10]。前文分析提到,钛合金电火花加工过程中易产生TiC,对加工效率影响较大。故进行工艺试验,对比了紫铜、石墨2种不同电极加工时,工件表面覆盖层TiC的含量情况。
2.1试验条件
机床:μEDM-50电火花加工机工件:TC11钛合金电极:20mm紫铜、石墨圆柱电极工作液:专用煤油试验中所用的电加工参数如表1所示。用两种电极各加工10min,之后对不同试验条件下所加工出工件表面进行理化分析,对比TiC含量。
2.2试验结果对比
Ti元素和C元素在高温下只能以TiC这种物相存在,工件表面TiC含量应与化学成分的C元素含量的变化趋势一致。采用KYKY-EM3200型扫描电子显微镜进行能谱分析试验,结果如图1、图2。由图1分析结果可以看出,相同电参数条件下,紫铜加工的钛合金工件表面的TiC含量明显高于石墨材料,说明石墨材料更有利于钛合金的加工。在工件积碳方面(见图2),紫铜电极加工钛合金时,工件表面的积碳现象十分明显,紫铜电极的加工效率也明显低于石墨电极。
3正交工艺试验
正交试验设计是用来科学设计多因素试验的一种方法。其利用一套规格化的正交表安排试验,得到的试验结果再用数理统计方法进行处理,使之得出科学结论。主要优点是能在多试验条件中选出代表性强的少数试验方案,通过对这些少数试验方案结果的分析,从中找出最优方案或最佳生产工艺条件[11]。试验基于Form20电火花成型机床,电极采用20mm圆柱石墨电极,工件为60mm×20mm×20mm的TC11钛合金样,工作液为电火花成型机床专用煤油,加工深度设置为2mm,其因素水平表如表2所示.由于From20机床电源系统对电流、脉宽2参数的匹配关系进行了严格限制,因素水平表中所选的电流的脉宽均为56μs。使用统计软件SPSS进行了正交试验设计,正交试验表及结果如表3所示。方差分析法是正交试验常用的分析方法之一。能把因素水平的变化所引起的试验结果间的差异与误差的波动所引起的试验结果间的差异区分开,并能给出可靠的数量估计。使用SPSS软件进行正交试验方差分析,结果如图3、图4。从图3可以看出,统计量P值(Sig列)为(0.000<0.016<0.058<0.531),故加工参数对加工效率的影响程度依次为:加工极性>占空比>电压>电流,优选参数组为12:加工极性负极,脉冲宽度56μs、脉冲间隔224μs(占空比1:4),加工电压100V,峰值电流39A。电极损耗率方面,从图4分析结果可以看出,加工参数对电极损耗效率的影响程度依次为:占空比>电流>加工极性>电压,考虑到正极性条件下,加工效率极慢,电极几乎也不损耗,故优选参数组为9:脉冲宽度56μs、脉冲间隔168μs(占空比1:3),峰值电流39A,加工极性负极,加工电压80V。由以上试验结果可知加工效率和电极损耗对应的优选参数组并不相同。因此,在实际加工过程中应根据具体要求匹配参数。
4改善工艺条件的辅助措施
4.1冲液方式的选择
电蚀产物排出是否顺畅,对钛合金电加工加工效果影响十分明显。在排屑条件不好的情况下,极易在工件表面形成瘤状积碳颗粒(如图5),不但难以消除,还会导致电极表面形成凹坑,改变电极形状,甚至无法获得预期的工艺结构。冲液方向也会对积碳部位的形成位置产生影响(如图6所示)。在加工过程中除了要保证冲液量足够外,也要保证冲液各个方向的均匀程度,才能抑制积碳部位的形成.由于电火花成型加工中,工件埋在工作液中,工件表面工作液的流动速率有限。在工艺结构允许的情况下,应当尽量使工作液液面接近加工部位表面,并使冲液头在工作液面以上,增加加工部位附件的工作液流动速率,使冷却、以及消电离过程更加充分,进而改善加工效率。
4.2机床辅助功能的利用
Form20机床提供了1项“在建立时产生震动”的加工辅助功能,可以在加工过程中给电极端加入一个轴向的往复运动,保证加工过程中电极可以周期性地远离工件,改善电加工产物的排屑情况,使加工状态更加稳定(如图7所示)。
5结论
通过理论分析和工艺试验的开展,研究了电极材料,电参数等工艺条件对TC11钛合金电火花加工效率及电极损耗的影响,研究结果表明,使用石墨作为电极材料,以电极负极性、脉冲宽度56μs、脉冲间隔224μs(占空比1∶4),加工电压100V,峰值电流39A的放电参数进行加工,加工稳定性较好,材料去除率约110mm3/min。
作者:武芃樾 王兴桥 尹青峰 周林 单位:中国工程物理研究院机械制造工艺研究所