摘要:本文描述了高职院校高等数学教学的现状以及数学建模与其发展状况;论述了将数学建模思想与方法融入高等数学课程教学中的重要性和必要性;对于在现行高职院校高等数学的教学中怎样融入数学建模思想与方法提出了建议,并对在高等数学教学改革过程中应注意的问题提出了自己的建议和看法。
关键词:高职院校;数学教学改革;数学建模
中图分类号:G42 文献标识码:A DOI:10.3969/j.issn.1672-8181.2016.01.177
1引言
在21世纪的教育改革浪潮中,“联系实际与加强应用”成为教育改革的一个重要要求。各高等院校已经不同程度地开设了数学建模课程,高职院校也开始探索如何将数学建模思想以及方法融入到数学教学之中。数学建模竞赛及其相关活动表明,数学建模不仅培养了学生的观察力、想象力以及逻辑思维能力,同时提高了学生分析问题、解决实际问题的能力。因而如何将数学建模思想及方法应用到高等数学教学改革中就成为目前众多数学教学研究者的主要研究工作之一。
2高职院校高等数学教学的现状
目前,高职院校对高等数学的重视程度不够,课时安排较少,教师能完成的数学教学内容非常紧张,加之学生基础较差,兴趣不高,这样就使得高等数学教学难以达到预期的结果。具体问题如下:其一、重理论,轻应用。近几年我校虽然改变了以往教学中侧重于定义讲解、定理证明以及大量公式推导的教学重点,开始注重理论的应用,但是与专业学科的协调还是不够紧密,忽略了培养学生应用数学知识解决实际问题的意识和能力,这就使得学生主动性较差,兴趣较低,学习高等数学课程相当吃力。其二、内容多,课时少。为了培养学生的专业技能,教育部要求职业院校要充分发挥企业办学主体作用,加强校企共同育人,广泛开展实践教学,这样加大了实践教学环节,同时理论教学就相应减少。其三、基础差,难统一。高职院校的招生对象一般是高考低分的学生,他们的数学基础相对较差,接受知识的速度较慢,对数学的学习兴趣也不高。其四、教学方落后[1]。传统的“满堂灌”式的教学方式仍在大部分高职院校占主导地位,这种教学方式过于强调“循序渐进”以及反复讲解,虽然有利于学生掌握基础知识,但是造成了学生的惰性思维,不利于其独立性及创造性的发展。高职教育是职业教育的高等阶段。高职人才的培养应注重走“实用性”,高职数学教育不能等同于普通高校的高等数学教育,必须从实际出发,重新构建理论和实践教学体系,培养的应用能力应该有创造性。从这样的教育思想出发,将数学建模思想与方法渗透到高等数学课程教学中成为必然。
3数学建模及其发展状况
数学建模本身不是一个新的概念,也不是一个新的事物,几乎应用于所有应用学科[2]。从古至今,凡是需要用数学知识解决的实际问题,必然都要经过数学建模过程来完成。但这些仅仅是数学建模思想及方法的潜在应用。随着科学技术的突飞猛进,计算机技术,各边缘学科飞速发展,这些极大推动了数学建模的发展,同时也扩大了数学的应用范围。20世纪60年代,数学建模开始进入一些西方大学,我国于80年代开始将数学建模引入大学课堂。随后经过20多年的发展,数学建模课程及讲座已经深入绝大多数本科及专科学校。大学生数学建模竞赛也开始成为全国高校规模最大的基础性学科竞赛。这些数学建模竞赛以及相关的科研活动不仅培养了大批人才,同时也推动了大学的数学教学改革。数学建模教育就是面向全体学生进行的数学建模教学和实践活动。数学建模教学活动就是通过对已有的材料或模型进行讲解,让学生了解数学建模的方法和步骤;数学建模实践活动就是从事数学建模的各项活动,例如参加数学建模活动小组、参加各级别的数学建模竞赛等等。数学建模的教学以及实践环节是相互促进,相互补充的,这样最终达到培养大学生分析问题和解决问题的能力。
4将数学建模思想与方法渗透到高等数学课程教学中的必要性和重要性
面对高职院校数学教学中的种种问题,如果能在高等数学教学中充分体现数学建模的思想,将枯燥的教学内容与丰富多彩的专业实际问题结合起来,就可以把数学知识和数学应用穿插起来,不仅增强了学生学习数学的目的性,还增强了学生对数学的应用能力,达到了一箭双雕的目的。因此,将数学建模思想与方法渗透到高等数学课程教学中显得尤为重要。
5如何将数学建模思想与方法渗透到高等数学课程教学中
第一、在理论课中引入具体实例,弄清概念的意义。数学概念是因为实际需要而产生的,因此在数学教学中应重视如何将数学概念从实际问题中抽象出来,例如,由几何曲线的切线斜率、物理学的变速直线运动的速度引入导数的概念;由曲边梯形的面积、变速直线运动的路程来引入定积分的概念。像这样结合具体的实际意义才能够进一步加深学生对抽象概念的理解与掌握。第二、结合相关专业进行案例教学,培养学生建模以及专业学习能力。高职院校侧重于培养高等技术应用人才,那么更应该培养其实际应用能力。在数学教学中,结合其专业特色,选择案例教学将会事半功倍,不仅加深了学生对数学的学习,同时也加强了对本专业的学习。例如在生物医学专业学生的数学教学过程中引入种群生态模型、遗传模型、传染病模型等具体实例;在农学专业引用农作物害虫管理模型;在环境科学专业引用环境预测模型,水环境数学模型等;在化学、物理专业引用分子结构模型等等。在金融管理相关专业引用抵押贷款、管理问题等模型。这种有针对性的专业案例教学,既能使其体会到了学习过程中的数学知识,同时促进学生学习本专业的兴趣和需求,高效地达到了高职教育的真正目的。第三、开设数学建模选修课,丰富学生学习生活。数学建模选修课是将数学理论知识与实际问题紧密结合的一门选修课。基本任务是要培养学生运用数学理论知识及方法来解决生产生活中的实际问题的能力。开设数学建模选修课可以使学生了解数学与数学模型以及其方法意义,熟练掌握建立数学模型的一般方法和步骤,能够利用所学的高等数学中所学的初等函数、函数连续性、图解、微分方程等简单方法进行构造模型、求解模型;并且能够利用计算机来进行数学模型的求解。这样不仅促进了学生本身对实际问题的求解能力,丰富了学习生活;同时也提高了学生学习高等数学的兴趣和需求。第四、积极参加数学建模竞赛活动,提高学生的创新能力。大学生数学建模竞赛创办于1992年,是目前全国规模最大的基础性学科竞赛,这种具有知识性、趣味性以及创新性的数学实践活动,对提高大学生学习数学的兴趣,培养其团队精神以及提高其创性能力都是十分有利的。面对国际国内这种数学教育形式,我院从2011年开始连续参加全国大学生数学建模竞赛,共获得全国二等奖三个,陕西赛区一等奖十一个,陕西赛区二等奖十五个的好成绩。通过参加全国数学建模竞赛,加强了学生的竞赛意识、创新能力,同时也拓宽了师生的视野,丰富了教学内容,克服了传统教育模式的缺点,提高了学生学学习数学、运用数学的兴趣以及能力,从而提高了教学质量。
6将数学建模思想与方法渗透到高等数学课程教学中应注意的问题
第一、以学生为中心,教师为关键。教学活动的目的是培养学生,教学活动是在教师的引导下进行的,因此,教师是关键,学生为中心。在教学活动过程中教师是否能充满感情地、深入浅出地、耐心地结合学校、学生、专业以及具体实际情况进行教学活动,就成为教学的关键。这就需要教师刻苦钻研,不断提高自身的发展需要,处处为学生的成长和教育着想。将数学建模思想及方法渗透到高等数学课程教学中,需结合学生的具体情况,将学生看作是主体去钻研具体的教育手段和方法,同时具有对学生的爱心和献身精神。第二、注重主体,切莫喧宾夺主。将数学建模思想和方法渗透到高等数学课程教学中,在教学过程中引用实际案例进行教学使学生在一定程度上学习数学建模的思想和方法,从而促进学生更好地学习并掌握主干数学课程。切莫只注重了案例的引入、数学建模的思想和方法,忽视了数学课程本身,这样就会喧宾夺主,忽略了数学教学本身。第三、思考与钻研要深入,行动需稳妥。将数学建模思想和方法渗透到高等数学课程教学中,这是一个潜移默化的过程[3],而不会是一个立竿见影的特效。需要我们踏踏实实的钻研,与相关专家联手合作。思考与钻研要深入,行动需稳妥。真正讲好一堂课、一个实例可能就是成功的开始。
7结语
高职数学教学面临着理论与实际相脱节的问题,数学建模既能起到联系理论与实际的作用,又可以推动高职数学教学的改革。将数学建模思想及方法渗透到高等数学课程教学中不仅可以提高教学质量,还可以提高学生解决实际问题的能力,培养学生的团队精神与创新能力。但是这个改革的过程任重道远,还需要不断将理论和教学实践相结合,不断去摸索、发展和完善,才能真正让学生受益。
参考文献:
[1]罗芳.数学建模教育与高职数学教育改革研究[D].湖南师范大学,2004.
[2]姜启源.数学建模[M].高等教育出版社,1993.
[3]叶其孝.把数学建模、数学实验的思想和方法融入高等数学课的教学中去[J].工程数学学报,2003,(8):4-12.
作者:付翠 郭子鹏
相关专题:山东行政学院 诸暨市日化用品贸易商