期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 管理论文 > 财务管理 >

TIG焊焊接接头的组织与力学性能

铝及铝合金材料具有密度低、强度高、导热性好、断裂韧性高等优点[1],已经广泛应用于航空航天和交通运输等行业.近年来,中国飞速发展的飞机和高铁制造行业,对性能优良铝合金材料的需求越来越大.AlCuMg硬铝合金是一种室温性能优良的高强铝合金,但因其焊接性能不佳,从而限制了其在工程中的应用.搅拌摩擦焊[2-4]和激光焊[5-6]的出现在较大程度上改善了AlCuMg硬铝合金的焊接质量问题.然而,这两种焊接方法的设备成本都很高,在发展中国家难以得到普及.因此,传统的交流TIG焊焊接方法依然具有较高的研究价值.已有研究[7-10]表明,AlCuMg硬铝合金TIG焊焊接接头主要存在焊接热裂纹、焊接接头软化、气孔和焊接变形等缺陷.本文采用典型的AlCuMg硬铝合金(2A12)进行了焊接实验.文献[7]表明,焊接硬铝合金2A12时主要采用抗裂性较好的ER4145、ER4043或BJ380A焊丝.其中,ER4145(Al10Si4Cu)焊丝的抗热裂能力很强,但焊丝及焊缝的延性很差.ER4043(Al5SiTi)焊丝的抗热裂能力较强,形成的焊缝金属的延性也较好.当ER4043焊丝用于钨极氩弧焊时,能有效防止焊缝金属产生结晶裂纹,但该焊丝抑制近缝区母材产生液化裂纹的能力较差.BJ380A(Al5Si2CuTiB)焊丝的主要成分与ER4043(Al5SiTi)焊丝基本相同,而且添加了较多的Cu元素及适量的B元素,因此,BJ380A焊丝能很好地防止焊缝的结晶裂纹以及近缝区液化裂纹的产生,但该焊丝在市场上的销量非常小,很难购买到合格的产品.综合比较后,本文选用了容易购买的ER4043焊丝.选用ER4043焊丝的另一个优点是在焊接过程中,母材中的部分Cu、Mg等合金元素可以过渡到焊缝中,使焊缝金属产生微合金化.已有研究[11]表明,微合金化能够增加由ER4043焊丝焊接得到的焊接接头的强度和塑性.本文将热影响区中的软化区域称为“过时效区”,而将热影响区中的硬化区域称为“固溶区”.

1实验材料及方法

实验母材为2A12硬铝合金,且其热处理状态为T4态,即经过了固溶(495~505℃)+自然时效处理.试板尺寸为150mm×60mm×4mm.实验采用ER4043焊丝,且其直径为12mm.母材与焊材的化学成分如表1所示.由于焊丝中Si元素的含量较高,可以有效地抑制焊接热裂纹的产生.采用自动送丝机构和自动行走机构配合交流TIG焊接电源进行焊接实验.在焊接过程中,利用琴键式卡具强制固定试板.焊前对母材坡口周围进行机械清理,同时注意保持焊丝的洁净.试板的坡口角度为60°,在焊接过程中需要使用引弧板和收弧板,且试板背面需加散热铜垫板.实验中采用单面单层焊接工艺.其中,焊接电流为140A;焊接电压为17V;焊接速度为15cm/min;送丝速度为250cm/min;钨极直径为32mm.焊缝正反面成型照片如图1所示.可见,由ER4043焊丝焊接得到的焊接接头成型良好.在外观检查合格后,再对焊接接头进行拉伸、硬度与金相试样的制备.金相腐蚀剂采用Keller试剂(1mLHF+15mLHCl+25mLHNO3+95mLH2O).

2实验结果与分析

2.1硬度曲线

采用维氏硬度计测量焊接接头的硬度曲线,由于焊接接头具有对称性,实验中只测量了焊接接头一侧的硬度值,结果如图2所示.由图2可见,焊接接头的硬度曲线中存在两个低点,一个位于热影响区的过时效区,另一个位于焊缝区.处于热影响区的固溶区的硬度值得到了提高,且几乎与母材的硬度水平相近,且固溶区与母材的硬度均约为140HV.近缝区的硬度值朝着熔合线方向呈现出较为剧烈的下降趋势,且近缝区的硬度从120HV下降到了90HV左右.熔合线区的硬度约为95HV.焊缝中心的硬度约为90HV,故该区硬度约为母材硬度的65%.处于热影响区的过时效区硬度约为120HV,且该区硬度约为母材硬度的86%.

2.2显微组织

图3为焊接接头各区域的显微组织.图3a为焊接接头的母材的显微组织.可见,该区域晶粒大小均匀,变形程度一致,并沿轧制方向有序排列.母材基体上散落分布着一些较大的黑色颗粒,这些黑色颗粒主要为固溶时未溶入母材的粗大S相(Al2CuMg)和杂质.图3b为位于热影响区中的固溶区的显微组织.可见,经腐蚀后该区域的金相图片发黑,且粗大黑色颗粒略微长大.造成固溶区金相图片发黑的原因是在焊接过程中,由于该区域温度高于人工时效温度,但是低于母材固溶温度,基体中的Cu原子发生聚集,使得过渡相(S′相)转变为粗大的S相,即出现过时效现象.这些弥散分布在基体中的S相被腐蚀剂腐蚀后会变黑,因此,固溶区的金相图片也同样发黑.另外,S相生成的同时基体也会变软,因而在金相试件的制备过程中很容易产生划痕.图3c为位于热影响区的固溶区的显微组织.可见,该区域晶粒变形程度低于母材,但依然沿着轧制方向有序排列.该区域基体中散落分布的粗大颗粒进一步长大并发生聚集.在焊接过程中,固溶区温度达到了母材的固溶温度,但是低于母材的固相线温度,因而平衡相(S相)重新溶入基体,并在冷却后形成了过饱和固溶体.随后在焊后自然时效过程中析出S′相.经过上述过程,该区域相当于经历了一次固溶处理,强度能够得到恢复,因此,该区域称为固溶区.图3d为近缝区的显微组织.可见,该区域晶粒呈等轴状,并未出现明显长大的晶粒.该区域发生了明显的晶界液化现象,散落分布的黑色颗粒已经全部溶入基体中.在焊接过程中,该区域温度达到了母材的固相线温度,因而可使母材中的低熔点共晶体和散落分布的粗大颗粒相发生熔化,而熔化后的低熔点共晶体会聚集到晶界,形成了粗大共晶体,从而降低了基体中合金元素的含量.越靠近焊缝,基体承受的温度越高,晶界形成的低熔点共晶体也就越多,基体中的合金元素含量也就越低,基体强度也就越低,因此,在硬度曲线上表现出硬度急剧下降的趋势.同时,虽然近缝区温度达到了母材的固相线温度,但是由于母材中由各种合金元素形成的弥散分布的细小强化相颗粒较多,限制了晶界的大范围移动,因而晶界只能进行平直化运动,因此,晶粒并未大幅度长大,只是形成了正常大小的圆润等轴晶.图3e为靠近熔合线的焊缝组织.可见,此区域为柱状组织,形成原因是在结晶过程中,该区域的温度梯度很大,晶粒平行于温度梯度方向的生长速度较快,而垂直于温度梯度方向的生长速度较慢,因此,最终形成了朝焊缝中心生长的柱状晶.图3f为焊缝中心的显微组织,该区域呈现出明显的枝晶组织,晶界处出现了大量低熔点共晶体聚集的现象.由于焊丝中的Si含量很高,在焊缝金属结晶凝固的过程中,Si元素和从母材中过渡而来的Cu、Mg等合金元素将会被排挤到晶界,因而在晶界形成大量的低熔点共晶体.这些低熔点共晶体一方面能够改善焊接接头的抗结晶裂纹能力,但另一方面也会降低焊接接头的塑性.

2.3TEM分析

图4为处于热影响区的固溶区的透射电子显微(TEM)图像.由图4可以观察到大量均匀分布的S′相,这些S′相是在固溶后的自然时效阶段形成的,可以对基体起到有效的强化作用.固溶区的脱溶序列可以表示为GP区—S″—S′—S(Al2CuMg)固溶区在受到焊接热循环作用后,基体中的平衡相(S相)会发生溶解,而分解出来的Cu、Mg原子将会重新固溶到基体中形成过饱和固溶体.随着温度的下降,过饱和固溶体中的Cu、Mg原子将会发生聚集,依次形成GP区、S″相和S′相.S′相为非平衡组织,是基体快速冷却后形成的可以在室温下长期存在的强化相,且与基体存在部分共格关系,因此,S′相能够产生较大的畸变能,并起到应变强化、弥散强化和化学强化的作用.S′相不但可以提高焊接接头的强度,而且也能提高其塑性,故S′相的强化效果最为理想.但是S′相在受热时容易聚集转变成S相,S相的尺寸较为粗大,与基体无共格结合,故其强化效果大大降低.这就是处于热影响区的过时效区硬度低于母材和固溶区的原因.

2.4拉伸实验

焊接接头的拉伸实验结果如表2所示.在拉伸实验中,拉伸试件大多断裂于焊缝中心区域.由表2可见,焊接接头的平均抗拉强度约为270MPa,为母材平均抗拉强度的60%.焊接接头的断后伸长率为65%,为母材的断后伸长率为176%.因此,焊接接头的平均抗拉强度和断后伸长率均大幅度低于母材.

2.5SEM与EDS分析

对近缝区和焊缝区的低熔点共晶体进行扫描电子显微(SEM)观察和能谱(EDS)分析,结果分别如图5和表3所示.图5a为近缝区晶界共晶体的SEM图像,可见亮灰色共晶体沿着晶界断续分布(如图5a中A区所示).结合能谱分析结果可知,该区域Cu元素的含量高达2671%,导致基体强度会由于Cu元素含量的急剧降低而随之降低.同时,存在于近缝区晶界的大量低熔点共晶体也会增加近缝区的液化裂纹敏感性.图5b~d为焊缝组织中具有不同形貌的低熔点共晶体的SEM图像.结合表5中的EDS数据可知,由于这些共晶体的Cu、Mg和Si元素含量各不相同,因此,这些共晶体应该是由不同成分的组元构成的低熔点共晶体.由图5b~d可见,焊缝组织存在大量的低熔点共晶体.在这些共晶体的共同作用下,焊缝金属在结晶过程中具有“愈合”作用,能很好地抑制结晶裂纹现象,但其塑性变形能力较差.这是因为在焊缝凝固后期,如果晶界处存在的低熔点共晶体较少,则容易被焊接拉应力拉开形成裂纹;如果晶界存在较多的低熔点共晶体,则被拉开的晶界可以及时得到足够的液体(低熔点共晶体)来补充,即起到“愈合”作用.

3结论

AlCuMg硬铝合金焊接接头的组织和性能变化较为复杂,焊接接头的各个区域均具有各自鲜明的特点,且AlCuMg硬铝合金焊接接头的焊接性能较差.本文选用ER4043焊丝对AlCuMg硬铝合金进行焊接,并研究了所得焊接接头的组织与性能.通过以上实验分析,可以得出如下结论:1)在焊接接头的过时效区,由于S′相转变为强化效果较差的S相,因此,该区域硬度值大幅度下降.2)焊后焊接接头的固溶区强度可以自行恢复,且在该区域能够观察到大量的S′强化相.3)近缝区晶界存在大量富含Cu元素的低熔点共晶体聚集现象,造成基体中合金元素的含量下降,并对基体硬度产生了明显的影响.4)利用ER4043焊丝焊接得到的焊缝组织存在大量的低熔点共晶体,这些低熔点共晶体在结晶过法律期刊程中可以产生“愈合”作用,能够有效地抑制结晶裂纹,但同时也会降低焊缝的塑性.

作者:刘政军 刘继国 苏允海 单位:沈阳工业大学 材料科学与工程学院


    更多财务管理论文详细信息: TIG焊焊接接头的组织与力学性能
    http://www.400qikan.com/mflunwen/gllw/cwgl/189446.html

    相关专题:交通论文 创业理念


    上一篇:通信线路工程施工及现场管理
    下一篇:现代职业教育体系下培养学生的职业素质

    认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


    品牌介绍